No. 31 (2021): GFS
REVIEW ARTICLES

An introduction to one-dimensional inverse eigenvalue problems

ANTONIO MORASSI
Polytechnic Department of Engineering and Architecture, University of Udine, Udine, Italy

Keywords

  • nverse eigenvalue problems, Sturm-Liouville operators, Uniqueness, Borg’s approach.

How to Cite

[1]
MORASSI, A. 2021. An introduction to one-dimensional inverse eigenvalue problems. Friulian Journal of Science. 31, 31 (May 2021), 65–83.

Abstract

Aim of these notes is to present an elementary introduction to classical inverse eigenvalue problems in one dimension. Attention is mainly focused on the Borg’s approach to the unique determination of the potential in a Sturm-Liouville differential operator given in canonical form on a finite interval

References

  1. Ahlfors L.V. (1984). Complex Analysis, Third Edition. Singapore: InternationalStudent Edition, McGraw-Hill.
  2. Borg G. (1946). Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe.
  3. Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Mathematica, 78:1–96.
  4. Brezis H. (1986). Analisi funzionale: teoria e applicazioni. Napoli: LiguoriEditore.
  5. Friedman A. (1982). Foundations of Modern Analysis. Toronto: Dover.
  6. Gel’fand I.M., Levitan B.M. (1955). On the determination of a differential equation from its spectral function. American Mathematical Society Translations: Series 2, 1:253–304 (see also Izvestiya Akademii Nauk Sssr: Seriya Matematicheskaya, in Russian, (1951), 15:309–360).
  7. Gladwell G.M.L. (2004). Inverse Problems in Vibration, Second Edition. Dordrecht: Kluwer Academic Publishers.
  8. Hald O.H. (1978). The inverse Sturm-Liouville problem with symmetric potentials. Acta Mathematica, 141:263–291.
  9. Hochstadt H. (1973). The inverse Sturm-Liouville problem. Communicationson Pure and Applied Mathematics, 26:715–729.
  10. Levinson N. (1949). The inverse Sturm-Liouville problem. Math. Tidsskr. B.,25–30.
  11. Levitan B.M. (1987). Inverse Sturm-Liouville Problems. Utrecht: VNU Science Press.
  12. Marchenko V.A. (1950). Concerning the theory of a differential operator of the second order. Doklady Akademii Nauk SSSR, 72:457–460.
  13. McLaughlin J.R. (1988). Stability theorems for two inverse spectral problems. Inverse Problems, 4:529–540.
  14. P¨oschel J., Trubowitz E. (1987). Inverse Spectral Theory. New York: Academic Press.
  15. Titchmarsh E.C. (1962). Eigenfunction Expansion Associated with SecondOrder Differential Equations. Part I. Oxford: Clarendon Press.
  16. Weinberger H.F. (1965). A First Course on Partial Differential Equations with Complex Variables and Transform Methods. New York: Dover Publications.