No. 7 (2006): GFS
RICERCJIS

An electronic nose to evaluate fungal contamination

EMANUELA GOBBI
Department of Biology Applied to Plant Protection, University of Udine, Italy.
ROMANO LOCCI
Department of Biology Applied to Plant Protection, University of Udine, Italy.

Peraulis clâf

  • Electronic nose,
  • fumonisins,
  • maize,
  • mycotoxins,
  • odorants,
  • sensors
  • ...More
    Less

Cemût citâ

[1]
GOBBI, E. and LOCCI, R. 2006. An electronic nose to evaluate fungal contamination. Gjornâl Furlan des Siencis - Friulian Journal of Science. 7, 7 (Dec. 2006), 71–82.

Ristret

Following an introduction on the characteristics and potentialities of electronic noses, results obtained using an EOS853 instrument on maize samples inoculated with Fusarium verticillioides strains are illustrated. The technique appears suitable for the rapid separation of samples colonized by either fumonisin B1 producing or non producing cultures.

Riferiments

  1. Bear F., Connors B., Paradiso M. (1996). Neuroscience Exploring the Brain. Baltimore: Williams & Wilkins.
  2. Boysen M.E., Eriksson B.R.E., Schnurer J. (2001). Detection of food-borne toxigenic molds using molecular probes. In Khachatourians G.G., Arora D.K. (Eds) Applied Mycology and Biotechnology. Vol. 1. Agriculture and Food Production, pp. 267-287. Cover T.M., Hart P.E. (1967). Neareast neighbor pattern classification. Trans. IEEE Inform. Theory, 13: 21-27.
  3. Falasconi M., Gobbi E., Pardo M., Della Torre M., Sberveglieri G. (2005). Detection of toxigenic strains of Fusarium verticillioides in corn by electronic olfactory systems. Sensors and Actuators B, 108: 250-257.
  4. Gardner J.W, Bartlett P.N. (1999). Electronic Noses. Principles and Applications. Oxford: Oxford University Press.
  5. Gibson T.D., Prosser O., Hulbert J.N., Marshall R.W., Cercoran P., Lovery P., Ruck-Keene E.A, Heron S. (1997). Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. Sensors and Actuators B, 44: 413-422.
  6. Gouma P., Sberveglieri G. (2004). Novel materials and applications of electronic noses and tongues. MRS Bulletin, 29: 697- 700.
  7. Jelen H.H., Mirocha C.J., Wasowicz E., Kaminski E. (1995). Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichotecenes. Appl. Environm. Microbiol., 61: 3815-3820.
  8. Kershri G., Magan N. (2000). Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two Fusarium spp. using volatile production profiles and hydrolytic enzymes. J. Appl. Microbiol., 89: 825-83.
  9. Kershri G., Challen M., Elliott T., Magan N. (2003). Differentiation of Agaricus species and other basidiomycetes based on volatile production patterns using an electronic nose system. Mycol. Research, 107: 609-613.
  10. Locci R., Gobbi E. (2002). Lis fumonisinis: intosseants naturâi de blave in Friul [Fumonisins: natural toxicants of maize in Friuli]. Gjornâl Furlan des Siencis, 1: 31- 45 [46-59].
  11. Magan N. (1993). Early detection of fungi in stored grain. Internat. Biodeterior. Biodegrad., 32: 145-160.
  12. Magan N., Pavlou A., Chrysanthakis I. (2001). Milk sense: a volatile sensing system recognising spoilage bacteria and yeasts in milk. Sensors and Actuators B, 72: 28-34.
  13. Olsson J., Börjesson T., Lundstedt T., Schnürer J. (2000). Volatiles for mycological quality grading of barley grains: determinations using gas chromatography – mass spectrometry and electronic nose. Int. J. Food Microbiol., 59: 167-178.
  14. Olsson J., Börjesson T., Lundstedt T., Schnürer J. (2002). Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int. J. Food Microbiol., 72: 203-214.
  15. Pitt J.I. (1984). The significance of potentially toxigenic fungi in food. Food Techmol. Aust., 36: 218-219.
  16. Schnürer J. (1993). Comparison of methods for estimating the biomass of three foodborne fungi with different growh patterns. Appl. Environm. Microbiol., 59: 552-555.
  17. Wold S., Esbensen K., Geladi P. (1987). Principal component analysis. Chem. Intell. Lab. Systems, 2: 37-52.