No. 5 (2004): GFS
RICERCJIS

Ground measurements of the Earth Electric Field

GIORGIO BRESSAN
UMFVG-FENICS working group, Cividale del Friuli, Udine, Italy.
VALTER GENNARO
UMFVG-FENICS working group, Cividale del Friuli, Udine, Italy.
DARIOB. GIAIOTTI
Regional Meteorological Observatory of ARPA-OSMER FVG, Visco, Udine, Italy.
FULVIO STEL
Regional Meteorological Observatory of ARPA-OSMER FVG, Visco, Udine, Italy.

Peraulis clâf

  • Earth electricity,
  • cloud electrification,
  • lightning strikes

Cemût citâ

[1]
BRESSAN, G., GENNARO, V., GIAIOTTI, D. and STEL, F. 2004. Ground measurements of the Earth Electric Field. Gjornâl Furlan des Siencis - Friulian Journal of Science. 3, 5 (Dec. 2004), 37–48.

Ristret

This work provides a description and physical interpretation of the Earth’s electric field over the plain of Friuli. The electric field is measured by way of a field mill positioned in Ziracco (UD). The field mill records the changes of the electric field every second, both in fair weather and stormy conditions. In fair weather conditions the Earth electric field points toward the ground and has values of the order of 100 Vm-1. In stormy conditions, the Earth electric field magnitude increases rapidly and sudden inversions take place during the atmospheric electrical discharges. After these discharges the electric field returns to its initial values in different ways that still need an exhaustive interpretation. At the end of the storm, a typical trend is revealed. This trend can be interpreted based on the simple tripole model. All these features are analyzed in conjunction with the radar data, in particular with the VMI measurements, and in conjunction with the position of the cloud to ground lightning strikes.

Riferiments

  1. Bechini R., Gorgucci E., Scarchilli G., Dietrich S. (2001). The operational weather radar of Fossalon di Grado (Gorizia - Italy): accuracy of reflectivity and differential reflectivity measurements. Meteor. Atmos. Phys., 79: 275-284.
  2. Byrne C.J., Few A.A., Weber M.E. (1983). Altitude thickness and Charge concentration of charged regions of four thunderstorms during TRIP 1981 based upon in situ balloon electric field measurements. Geophys. Res. Lett., 10: 39-42.
  3. Dolezalek H. (1988). Discussion on Earth’s net electric Charge. Meteor. Atmos. Phys., 38: 240-245.
  4. Doviak R.J., Zrnic D.S. (1993). Doppler radar and weather observations. San Diego, California: Academic Press Inc., pp. 562.
  5. Giaiotti B.D., Stel F. (2001). A comparison between subjective and objective thunderstorm forecasts. Atmos. Res., 56: 111-126.
  6. Giaiotti B.D., Stel F. (2002). The analysis of Thunderstorm Forecasts on the Friuli-Venezia Giulia Plain. Gjornâl Furlan des Siencis/Friulian Journal of Science, 2: 59-76.
  7. Gringel W., Rosen J.M., Hoffman D.J. (1986). Electric Structure from 0 to 30 km. In Krider E.P. and Roble R.G. (Ed) The Earth’s Electrical Environment. Washington DC: National Academy Press, pp. 166-182.
  8. Hale L.C. (1984). Middle atmospheric electrical structure, dynamics and coupling. Adv. Space Res., 4:185-186.
  9. Harrison R.G. (2004). Long-term measurements of the global atmospheric electric circuit at Eskdalemuir, Scotland, 1911-1981. Atmos. Res., 70: 1-19.
  10. Imyanitov I.M., Chubarina E.V. (1967). Electricity of the free atmosphere. US Department of
  11. Commerce, Clearing House for Federal Science and Technology information, Springfield
  12. Virginia, pp. 210.
  13. Kamra A.K., Pawar S.D. (2002). Recovery curves of the surface electric field after lightning discharges occurring between the positive charge pocket and negative charge centre in a thundercloud. Geophys Res. Let., 29: 2108.
  14. Kasemir H.W. (1994). Current budget of the atmospheric electric global circuit. J. Geophys. Res., 99: 10701-10708.
  15. MacGorman D.R., Rust D.W. (1998). The electrical nature of storms. Oxford University Press - Oxford, pp. 422
  16. Markson R. (1976). Ionospheric potential variations obtained by aircraft measurements of potential gradient. J. Geophys. Res., 81: 1980-1990.
  17. Rakov V.A., Uman A.M. (2003). Lightning: physics and effects. Cambridge: University Press.
  18. Rust W.D., Marshall T.C. (1996). On abandoning the thunderstorm tripole-charge paradigm. J. Geophys Res., 101: 23499-23504.
  19. Standler R.B., Winn W.P. (1979). Effects of coronae on electric field beneath thunderstorms. Q. J. R. Meteorolo. Soc., 105: 285-302.
  20. Volland H. (1984). Atmospheric Electrodynamics. In Lanzerotti L.J., Wasson J.T. (Ed) Physics and Chemistry in Spave. Vol. II. New York : Springer-Verlag, pp. 205.
  21. Whipple F.J.W. (1929). On the association of the diurnal variation of the electric potential gradient in the fine weather with the distribution of thunderstorms over the globe. Q. J. Roy. Meteor. Soc. A., 55: 1-17.
  22. Wilson C.T.R. (1920). Investigations on lightning discharges and on the electric field of thunderstorms. Phil. Trans. Roy. Soc. A., 208: 73-115.
  23. Winn W.P. (1993). Aircraft measurements of electric field: Self Calibration J. Geophys Res., 98: 7351-7365.