No. 30 (2020): GFS
RICERCJIS

Identification of concentrated masses in nanoresonators

MICHELE DILENA
Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 114, 33100 Udine, Italy.
MARTA FEDELE DELL’OSTE
Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 114, 33100 Udine, Italy.
JOS´E FERN´ANDEZ-S´AEZ
Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Av. de la Universidad 30, 28911 Legan es, Madrid, Spain.
ANTONINO MORASSI
Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 114, 33100 Udine, Italy.
RAM´ON ZAERA
Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Av. de la Universidad 30, 28911 Legan es, Madrid, Spain.

Peraulis clâf

  • Nanoresonator sensors,
  • point masses,
  • identification,
  • inverse problems

Cemût citâ

[1]
DILENA, M., FEDELE DELL’OSTE, M., FERN´ANDEZ-S´AEZ , J., MORASSI, A. and ZAERA, R. 2020. Identification of concentrated masses in nanoresonators. Gjornâl Furlan des Siencis - Friulian Journal of Science. 30 (May 2020), 21–35.

Ristret

In this paper we review some recent results concerning inverse problems of mass detection in nanobeams by resonant frequency measurements. The nanobeam is modelled within the modified strain gradient theory, according to the Euler-Bernoulli kinematic assumptions. We first consider the identification of a single small point mass in a uniform nanobeam supported at the ends. By linearizing the inverse problem near the referential system, it turns out that knowledge of the shifts in the first two resonant frequencies allows for the unique determination of the mass intensity and the mass position, up to a symmetrical position. Closed form expressions are derived for the position and the intensity of the added mass. In the second part of the paper, the method is extended to the identification of two small point masses added in a supported uniform nanobeam by using the shifts in the first four resonant frequencies. Key-words. Nanoresonator sensors, point masses, identification, inverse problems.

Riferiments

  1. Akgoz B., Civalek O. (2011). Strain gradient elasticity and modified couplestress models for buckling analysis of axially loaded micro-scaled beams. International Journal of Engineering Science 49:1268–1280.
  2. Alava T., Mathieu F., Mazenq L., Soyer C., Remiens D., Nicu L. (2010). Siliconbased micromembranes with piezoelectric actuation and piezoresistive detection for sensing purposes in liquid media. Journal of Micromechanics and Microengineering 20: article 075014.
  3. Bhaswara A., Keum H., Rhee S., Legrand B., Mathieu F., Kim S., NicuL., Leichle T. (2014). Fabrication of nanoplate resonating structures viamicro-masonry. Journal of Micromechanics and Microengineering 24: article115012.
  4. Braun T., Barwich V., Ghatkesar M.K., Bredekamp A.H., Gerber C., HegnerM. (2005). Micromechanical mass sensors for biomolecular detection in aphysiological environment. Physical Review E 72: article 031907.
  5. Datar R., Kim S., Jeon S., Hesketh P., Manalis S., Boisen A., Thundat T.(2009). Cantilever sensors: nanomechanical tools for diagnostics. MRS Bulletin 34:449–454.
  6. Fern´andez-S´aez J., Morassi A., Rubio L., Zaera R. (2019). Transverse freevibration of resonant nanoplate mass sensors: identification of an attachedpoint mass. International Journal of Mechanical Sciences 150:217–225.
  7. Gfeller K.Y., Nugaeva N., Hegner M. (2005). Micromechanical oscillators asrapid biosensor for the detection of active growth of Escherichia coli. Biosensors and Bioelectronics 21:528–533.
  8. Green A.E. and Rivlin R.S. (1964). Multipolar Continuum Mechanics. Archivefor Rational Mechanics and Analysis 17:113–147.
  9. Jensen K., Kim K., Zettl A. (2008). An atomic-resolution nanomechanical masssensor. Nature Nanotechnology 3:533–537.
  10. Kong S., Zhou S., Nie Z., Wang K. (2009). Static and dynemic analysis ofmicro-beams based on strain gradient elasticity theory. Iternational Journalof Engineering Science 47:487–498.
  11. Kr¨oner E. (1963). On the physical reality of torque stresses in continuum mechanics. International Journal of Mechanical Sciences 1:261–278.
  12. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P. (2003). Experimentsand theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51:1477–1508.
  13. Lim T.-C. (2011). Nanosensors: Theory and Applications in Industry, Healthcare and Defense, First Edition. Boca Raton, FL: CRC Press.
  14. Mindlin R.D. (1964). Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis 16:51–78.
  15. Morassi A., Fern´andez-S´aez J., Zaera R., Loya J.A. (2017). Resonator-baseddetection in nanorodas. Mechanical Systems and Signal Processing 93:645–660.
  16. Dilena M., Fedele Dell’Oste M., Fern´andez-S´aez J., Morassi A., Zaera R. (2019).
  17. Mass detection in nanobeams from bending resonant frequency shifts. Mechanical Systems and Signal Processing 116:261–276.
  18. Romano G., Barretta R., Diaco M., Marotti de Sciarra F. (2017). Constitutive
  19. boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences 121:151–156.
  20. Rubio L., Fern´andez-S´aez J., Morassi A. (2016).Identification of two cracks withdifferent severity in beams and rods from minimal frequency data. Journalof Vibration and Control 22:3102–3117.
  21. Toupin R.A. (1963). Elastic materials with couple-stresses. Archive for RationalMechanics and Analysis 11:385–414.
  22. Voiculescu I., Zaghloul M. (Eds.) (2015). Nanocantilever Beams. Modeling, Fabrication, and Applications, First Edition. New York: Taylor & Francis
  23. Wang Q., Arash B. (2014). A review on applications of carbon nanotubes andgraphenes as nano-resonator sensors. Computational Materials Science 82:350-360.