RICERCJIS
Durability of building materials: evaluation of alternative moisture reference years generation procedure for the Udine climate
Peraulis clâf
- test reference year,
- building envelopes,
- heat and moisture transfer,
- moisture reference year,
- hygrothermal simulations
Cemût citâ
[1]
LBERATO, M., MURANO, G., DE ANGELIS, A., SARO, O. and CORRADO, V. 2019. Durability of building materials: evaluation of alternative moisture reference years generation procedure for the Udine climate. Gjornâl Furlan des Siencis - Friulian Journal of Science. 27 (May 2019), 68–80.
Ristret
The durability of a building could be improved by a proper moisture design, using an advanced coupled heat and moisture simulation. The weather files used as boundary conditions are not usually suited for moisture-related analysis and the standard weather reference year generation procedures are not intended to represent moisture-related weather variables. In this study, a procedure was proposed to design appropriate reference years (Moisture Reference Years, MRY), using a modification of the method described in the standard EN ISO 15927-4:2005 as a starting point.
Riferiments
- CEN European Committee for Standardization (2005). EN ISO 15927-4:2005. Hygrothermal performance of buildings – Calculation and presentation of climatic data – Part 4: Hourly data for assessing the annual energy use for heating and cooling. CEN: Bruxelles, Belgium.
- CEN European Committee for Standardization (2007). EN 15026:2007. Hygrothermal Performance of Building Components and Elements – Assessment of Moisture Transfer by Numerical Simulation. CEN: Bruxelles, Belgium.
- CEN European Committee for Standardization (2012). EN ISO 13788:2012. Hygrothermal performance of building components and building elements - Internal surface temperature to avoid critical surface humidity and interstitial condensation - Calculation methods. CEN: Bruxelles, Belgium.
- Finkelstein J.M., Schafer R.E. (1971). Improved goodness-of-fit tests. Biometrika, 58, 3: 641-645.
- Kalamees T., Vinha J. (2004). Estonian Climate Analysis for Selecting Moisture Reference Years for Hygrothermal Calculations. Journal of Thermal Envelope and Building Science,27, 3: 199-220.
- Kalamees T., Jylhä K., Tietäväinen H., Jokisalo J., Ilomets S., Hyvönen R., Saku S. (2012). Development of weighting factors for climate variables for selecting the energy reference year according to the EN ISO 15927-4 standard. Energy and Buildings, 47: 53-60.
- Libralato M., Saro O., De Angelis A., Spinazzè S. (2017). Comparison between Glaser method and Heat, Air and Moisture transient model for moisture migration in building envelopes. Applied Mechanics and Materials, 887: 385-392.
- Libralato M., Murano G., De Angelis A., Saro O., Corrado V. (2018). Hygrothermal modelling of building enclosures: reference year design for moisture accumulation and condensation risk assessment. Proceedings of the IBPC 2018 Conference Healthy, Intelligent, and Resilient Buildings and Urban Environments. Syracuse, NY.
- Murano G., Corrado V., Dirutigliano D. (2016). The new Italian Climatic Data and their Effect in the Calculation of the Energy Performance of Buildings. Energy Procedia 101: 153-160.
- Murano G., Dirutigliano D., Corrado V. (2018). Improved procedure for the construction of a Typical Meteorological Year for assessing the energy need of a residential building. Journal of Building Performance Simulation, 13: 139-151.
- Riva G., Murano G., Corrado V., Baggio P., Antonacci G. (2012). Aggiornamento parametri climatici nazionali e zonizzazione del clima nazionale ai fini della certificazione estiva. ENEA, Ministero dello Sviluppo Economico.
- Riva G., Murano G., Corrado V., Baggio V., Antonacci G. (2010). Definizione degli anni-tipo climatici delle province di alcune regioni italiane (Emilia Romagna - Friuli Venezia Giulia – Liguria – Lombardia – Piemonte – Toscana – Trentino Alto Adige – Valle D’Aosta - Veneto). ENEA, Ministero Dello Sviluppo Economico.
- Sontag L., Nicolai A., Vogelsang S. (2013). Validierung der Solverimplementierung des hygrothermischen Simulationsprogramms DELPHIN. Institut für Bauklimatik. Technische Universität Dresden. Persistent URL: urn:nbn:de:bsz:14-qucosa-128968.
- Zhou X., Derome D., Carmeliet J. (2016). Robust moisture reference year methodology for hygrothermal simulations. Building and Environment, 110: 23-35.