No. 16 (2011): GFS
RASSEGNIS

Provis dinamichis e lôr aplicazions inte Inzegnerie Civîl

A N T O N I N O M O R A S S I
Dipartiment di Inzegnerie Civîl e Architeture, Universitât dal Friûl, Udin, Italie.

Keywords

  • Provis dinamichis,
  • identificazion e diagnostiche struturâl,
  • problemis inviers,
  • puints,
  • edificis

How to Cite

M O R A S S I, A. N. T. O. N. I. N. O. (2023). Provis dinamichis e lôr aplicazions inte Inzegnerie Civîl. Gjornâl Furlan Des Siencis - Friulian Journal of Science, 16(16), 121–160. Retrieved from https://www.gfs-fjs.net/index.php/gsf/article/view/168

Ristret

Tes ultimis desenis di agns si è assistût a un interès simpri plui fuart viers
il disvilup e la aplicazion di provis dinamichis inte Inzegnerie Civîl. Lis finalitâts
di chestis tecnichis a son tantis. Dopradis intal colaut di oparis, par esempli, a
puedin dâ indicazions su la esatece dai modei struturâi o su la realizazion corete
dal progjet. Provis dinamichis ripetudis a distance di timp a puedin judâ a cjatâ
dams capitâts intal cors de vite di une opare e previodi i lôr efiets. In chest setôr
di ricercje, il disvilup tecnologjic resint al à metût a disposizion metodologjiis
precisis e siguris. Ma, intant che lis tecnichis sperimentâls a levin man a man perfezionantsi,
la interpretazion des misuris e je restade un pas indaûr. Il motîf principâl
di chestis dificoltâts al è di cirî inte nature invierse dai problemis di identificazion
struturâl e inte mancjance di un cuadri teoric complet. Cun di plui, tal
studi di struturis in scjale reâl si scuintrisi cun dute une serie di pidiments dovûts
a la complicazion dai sistemis studiâts, a la imprecision dai modei numerics che
si doprin par interpretâ lis misuris e a la scjarsetât dai dâts sperimentâi. In cheste
rassegne si presente e si discut cualchidun di chescj ponts cun riferiment a
esperiencis disvilupadis dal grup di ricercje coordenât dal autôr intai ultins agns.
In particolâr, si discutin aplicazions des provis dinamichis pal colaut di puints e
grancj edificis, pe diagnostiche struturâl e come supuart pe verifiche sismiche di
costruzions strategjichis.

References

  1. Benedettini F., Alaggio R., Fusco N. (2007). Prove dinamiche ed ispezioni visive in un programma di manutenzione di ponti. Strade & Autostrade, 4: 150-153.
  2. Benedettini F., Dilena M., Morassi, A. (2012). Vibration analysis and structural identification of a curved multi-span viaduct, Preprint.
  3. Brincker R., Zhang L., Andersen P. (2001). Modal identification of output-only systems using frequency domain decomposition, Smart Materials and Structures, 10: 441-445.
  4. Caddemi S., Caliò I., Liseni S. (2009). A procedure for the identification of concentrated damages on beams by free vibration tests. Proceedings of the 19th AIMETA National Conference on Theoretical and Applied Mechanics, Ancona.
  5. Capecchi D., Vestroni F. (2000). Monitoring of structural systems by using frequency data. Earthquake Engineering & Structural Dynamics, 28: 447-461.
  6. Catbas F.N., Brown D.L., Aktan A.E. (2006). Use of modal flexibility for damage detection and condition assessment: case studies and demonstrations on large structures. Journal of Structural Engineering ASCE, 132: 1699-1712.
  7. Cerri M.N., Vestroni F. (2000). Detection of damage in beams subjected to diffused cracking. Journal of Sound and Vibration, 234: 259-276. Choi S., Park S., Bolton R., Stubbs N., Sikorsky C. (2004). Periodic monitoring of physical property changes in a concrete box-girder bridge. Journal of Sound and Vibration, 278: 365-381.
  8. Dilena M., Morassi A. (2002). Identification of crack location in vibrating beams from changes in node positions. Journal of Sound and Vibration, 255: 915-930.
  9. Dilena M., Morassi A. (2009). Structural health monitoring of rods based on natural frequency and antiresonant frequency measurements. Structural Health Monitoring: An International Journal, 8: 149-173.
  10. Dilena M., Morassi A. (2010). Reconstruction method for damage detection in beams based on natural frequency and antiresonant frequency measurements. Journal of Engineering Mechanics ASCE, 136: 329-344.
  11. Dilena M., Morassi A. (2011). Dynamic testing of a damaged bridge. Mechanical Systems and Signal Processing, 25: 1485-1507.
  12. Dilena M., Morassi A., Perin M. (2011). Dynamic identification of a reinforced concrete damaged bridge. Mechanical Systems and Signal Processing, 25: 2990-3009.
  13. Ewins D.J. (1988). Modal analysis in an imperfect world. Proceedings of the 13th International Seminar on Modal Analysis, Leuven (Belgium).
  14. Ewins D.J. (2000). Modal testing: Theory, practice and application. Baldock, UK: Research Studies, 2nd Ed.
  15. Farrar C.R., Jauregui D.A. (1998). Comparative study of damage identification algorithms applied to a bridge: I. Experiment. Smart Materials and Structures, 7: 704–719.
  16. Friswell M.I., Mottershead J.E. (1995). Finite Element Model Updating in Structural Dynamics. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  17. Gentile C., Gallino N. (2008). Condition assessment and dynamic system identification of a historic suspension footbridge. Structural Control & Health Monitoring, 15: 369-388.
  18. Gladwell G.M.L. (2004). Inverse Problems in Vibration. Solid Mechanics and Its Applications Series, volume 119. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  19. Gladwell G.M.L., Morassi A. (1995). On isospectral rods, horns and strings. Inverse Problems, 11: 533-554.
  20. Gladwell G.M.L., Morassi A. (1999). Estimating damage in a rod from changes in node positions. Inverse Problems in Engineering, 7: 215-233.
  21. Gladwell G.M.L., Morassi A. (2010). A family of isospectral Euler-Bernoulli beams. Inverse Problems, 26, paper 035006: 12 pp.
  22. Gladwell G.M.L., Morassi A. (Eds.) (2011). Dynamical Inverse Problems: Theory and Application. CISM Courses and Lectures, volume 529. Wien, Austria: Springer Verlag.
  23. Hassiotis S., Jeong G.D. (1993). Assessment of structural damage from natural frequency measurements. Computers & Structures, 49: 679-691.
  24. Hearn G., Testa R. (1991). Modal analysis for damage detection in structures. Journal of Structural Engineering ASCE, 117: 3042-3063. Huth O., Feltrin G., Maeck J., Kilic N., Motavalli M. (2005). Damage identification using modal data: experiences on a prestressed concrete bridge. Journal of Structural Engineering ASCE, 131: 1898-1910.
  25. Jimbo S., Morassi A., Nakamura G., Shirota K. (2012). A non-destructive method for damage detection in steel-concrete composite structures based on finite eigendata. Inverse Problems in Science and Engineering, 20: 233-270.
  26. Kato M., Shimada S. (1986). Vibration of PC bridge during failure process. Journal of Structural Engineering ASCE, 112: 1692-1703.
  27. Lauzon R.G., DeWolf J.T. (2006). Ambient vibration monitoring of a highway bridge undergoing a destructive test. Journal of Bridge Engineering ASCE, 11: 602-610.
  28. Liang R.Y., Hu J., Choy F. (1992). Quantitative NDE technique for assessing damages in beam structures. Journal of Engineering Mechanics ASCE, 118: 1468-1487.
  29. Mazurek D.F., De Wolf J.T. (1990). Experimental study of bridge monitoring technique. Journal of Structural Engineering ASCE, 116: 2532-2549.
  30. Morassi A. (2007). Damage detection and generalized Fourier coefficients. Journal of Sound and Vibration, 302: 229-259.
  31. Morassi A., Tonon S. (2008). Dynamic testing for structural identification of a bridge. Journal of Bridge Engineering ASCE, 13: 573-585.
  32. Morassi A. (2011), Dynamic testing and structural identification of the Hypo Bank office complex. I: Experiments. Journal of Structural Engineering ASCE, 137: 1527-1539.
  33. Morassi A., Polentarutti F. (2011). Dynamic testing and structural identification of the Hypo Bank office complex. II: Identification. Journal of Structural Engineering ASCE, 137: 1540-1552.
  34. Morassi A., Vestroni F. (Eds.) (2008). Dynamic Methods for Damage Identification in Structures. CISM Courses and Lectures, volume 499. Wien, Austria: Springer Verlag.
  35. Pandey A.K., Biswas M., Samman M.M. (1991). Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 145: 321-332.
  36. Papoulis A. (1985). Probabilità, variabili aleatorie e processi stocastici. Torino, Italia: Bollati Boringhieri.
  37. Rizos P.F., Aspragathos N., Dimarogonas A.D. (1990). Identification of crack location and magnitude in a cantilever beam from the vibration modes. Journal of Sound and Vibration, 138: 381-388.
  38. Salane H.J., Baldwin Jr. J.W. (1990). Identification of modal properties of bridges. Journal of Structural Engineering ASCE, 116: 2008-2021.
  39. Sinha J.K., Friswell M.I., Edwards S. (2002). Simplified models for the location of cracks in beam structures using measured vibration data. Journal of Sound and Vibration, 251: 13- 38.
  40. Teughels A., De Roeck G. (2004). Structural damage identification of the highway bridge Z24 by FE model updating. Journal of Sound and Vibration, 278: 589-610.
  41. Teughels A., Maeck J., De Roeck G. (2002). Damage assessment by FE model updating using damage functions. Computers & Structures, 80: 1869-1879.
  42. Toksoy T., Aktan A.E. (1994). Bridge-condition assessment by modal flexibility. Experimental Mechanics, 271-278.
  43. Vestroni F., Capecchi D. (2000). Damage detection in beam structures based on frequency measurements. Journal of Engineering Mechanics ASCE, 126: 761-768.
  44. Wahab M.M.A., De Roeck G. (1999). Damage detection in bridges using modal curvatures: application to a real damage scenario. Journal of Sound and Vibration, 226: 217-235.
  45. Xia Y., Hao H., Deeks A.J., Zhu X. (2008). Condition assessment of shear connectors in slabgirder bridges via vibration measurements. Journal of Bridge Engineering ASCE, 13: 43-54.