RICERCJIS
Peraulis clâf
- Torsion,
- thin-walled beams,
- asymptotic method,
- Γ-convergence
Cemût citâ
[1]
DAVINI, C., PARONI, R. and PUNTEL, E. 2008. A rigorous justification of design formulas for torsion in thin profiles. Gjornâl Furlan des Siencis - Friulian Journal of Science. 10, 10 (Jan. 2008), 75–88.
Ristret
A rather straightforward derivation of the Γ-limit of the torsion problem on a thin rectangle as the thickness goes to zero is obtained. The limit stresses are evaluated and the distributional nature of one of the stress components is clarified.
Riferiments
- Anzellotti G., Baldo S. and Percivale D. (1994). Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity. Asymptotic Analysis, 9(1): 61-100.
- Cabib E., Freddi L., Morassi A. and Percivale D. (2001). Thin notched beams. Journal of Elasticity, 64(2-3): 157-178.
- Dal Maso G. (1993). An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Boston, MA: Birkh¨auser Boston Inc.
- de Saint-Venant A.J.C.B. (1855). M´emoire sur la torsion de prismes, avec des consid´erations sur leur flexion. . .M´emoires des Savants Etrangers, 14: 233-560.
- Dell’Isola F. and Rosa L. (1996). An extension of Kelvin and Bredt formulas. Mathematics And Mechanics Of Solids, 1(2): 243-250.
- Higgins T.J. (1942). A comprehensive review of Saint-Venant’s torsion problem. American Journal of Physics, 10(5): 248-259.
- Kelvin W.T. and Tait P.G. (1912). Treatise on natural philosophy. Cambridge: Cambridge University Press.
- Le Dret H. and Raoult A. (1996). The membrane shell model in nonlinear elasticity:a variational asymptotic derivation. J.Nonlinear Sci., 6(1): 59-84.
- Morassi A. (1995). Torsion Of Thin Tubes - A Justification Of Some Classical Results. Journal Of Elasticity, 39(3): 213-227.
- Morassi A. (1999). Torsion of thin tubes with multicell cross-section. Meccanica, 34(2): 115-132.
- Paroni R. (2006). Theory of linearly elastic residually stressed plates. Mathematics and mechanics of solids, 11: 137-159.
- Prandtl L. (1903). Zur torsion von prismatischen st¨aben. Physikalische Zeitschrift, 4: 758-759.
- Rodriguez J.M. and Via˜no J.M. (1993a). Asymptotic analysis of Poisson equation in a thin domain – application to thin-walled elastic beams torsion theory .1. domain without junctions. Comptes Rendus De L’Academie Des Sciences Serie I-Mathematique, 317(4): 423-428.
- Rodriguez J.M. and Via˜no J.M. (1993b). Asymptotic analysis of Poisson equation in a thin domain – application to thin-walled elastic beams torsion theory .2. domain with junctions. Comptes Rendus De L’Academie Des Sciences Serie I-Mathematique, 317(6): 637-642.