Gjornal Furlan des Siencis 37. 2024, 11-89

Problemis inviers par nanostruturis

ANTONINO MORASSI*

Ristret. 1In cheste rassegne o esaminin cualchi risultat resint pai problemis
inviers relatifs aes nanostruturis elastichis sutilis. Lis nanostruturis a son con-
sideradis unidimensionals (nanotrafs) o bidimensionals (nanoplachis) e a son
descritis intal ambit di une version semplificade de teorie de elasticitat linear
cun gradient di deformazion par materiai isotrops. Un prin grup di risultats al
rivuarde 1'tis des nanotrafs tant che sensors di risonance di masse par identifica
une densitat di masse zontade no cognossude par mie¢ de misurazion di un nu-
mar finit di frecuencis di risonance. Intal secont grup di risultats, o determinin
stimis costrutivis dal alt e dal bas de aree di une inclusion elastiche no cognos-
sude pussibilmentri presint intune nanoplache, esprimudis in tiermins di lavor
esercitat di cjamps di fuarce e di moment aplicats al contor de nanoplache.

Peraulis claf. Nanotrafs e nanoplachis, sensor di masse, problemis inviers
dai autovalors cun dats finits, stimis de grandece di inclusions in nanoplachis.

1. Introduzion. In cheste rassegne o esaminarin cualchi probleme in-
viers relatif aes nanostruturis.

La sezion 2 e je dedicade ae introduzion di modei mecanics par nano-
trafs e nanoplachis intal contest de teorie de elasticitat par materiai cun
gradient di deformazion isotropic in deformazion infinitesimal. I modei
a son dedusuts in maniere formal tacant de formulazion tridimensional
debile dal probleme e specializant I'insiemi des configurazions amissi-
bilis dal pont di viste cinematic datr des ipotesis di Eulér-Bernoulli pes
nanotrafs e des ipotesis di Kirchhoff-Love pes nanoplachis.

Tal paragraf 3 o frontin il probleme inviers poniut dal Gs di une
nanotraf uniforme tant che sensor di masse. Il rilevament de masse
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si fonde su la misurazion des variazions de frecuence di risonance cau-
sadis de masse tacade a une nanotraf su lis primis frecuencis naturals
des vibrazions assidls o di flession. Chest al ¢ un probleme inviers dai
autovalors cun dats finits, caraterizat di patologjiis matematichis che
a rindin une vore complesse la sO analisi e risoluzion. Il nestri metodi
di ricostruzion si base suntune procedure iterative che e prodiis une
aprossimazion de densitat di masse discognossude come serie troncade
gjeneralizade di Fourier, cun coeficients che a son calcolats su la fonde
dai autovalors misurats. A poie de teorie si presentin simulazions nu-
merichis e verifichis sperimentals.

Un probleme diagnostic inte elastostatiche des nanoplachis al e frontat
tal paragraf 4. Ta chest paragraf, o calcolin il probleme di determina,
dentri di une nanoplache isotrope elastiche in flession cun cundizions al
contor di Neumann, la presince pussibile di une inclusion costituide di
material elastic diviers. Sot di ipotesi a priori adeguadis su la inclusion
discognossude, o furnin stimis cuantitativis dal alt e dal bas de aree dal
difiet discognossit, in tiermins di lavor esercitat dai dats al contor cuant
che la inclusion e je presinte e cuant che e je assente. In chest contest,
Pacent al sara metlit suntune schirie di struments cuantitatifs origjinai
di continuazion uniche pal operador elitic di sest ordin che al guvierne
la nanoplache in flession.

Nus par oportun zonta cualchi osservazion su la impostazion che o
vin dat a chest contribut. O vin preferit presenta une tratazion il plui
pussibil complete e autonome, tacant dal model mecanic, includude la
formulazion dal probleme inviers e la s6 soluzion e, cuant pussibil, ancje
lis verifichis numerichis e sperimentals. Tignint cont dai limits di spazi,
cheste sielte e a compuartat cence fal cierts disavantags. Par esempli,
cierts risultats a son dome enunziats e ciertis dimostrazions a son dome
abocadis. No vin in ogni cas nissun dubi che il letor interessat al vara
mit di cjata ducj i detais necessaris intai articui origjinai.

I risultats presentats in chest lavor a nassin intune rét di colabo-
razions e o desideri ringracid ducj i amis e i coleghis che cun lor o ai
vit il privileg e la oportunitat di colabora. O volares scomenca ringra-
ciant José Ferndndez-Séez (Pepe) e Ramoén Zaera (Universidad Carlos
IIT de Madrid), che mi an invidat e stigat a lavora su lis nanostruturis,
intun cun Lourdes Rubio e Antonio Loya. O volares po dopo ringracia,
in ordin alfabetic rigoros, come che ur plas ai matematics, - Giovanni

12



Problemis inviers par nanostruturis

Alessandrini (Universitat di Triest), Alexandre Kawano (Universidade
de Sao Paulo, in Brasil), Edi Rosset e Eva Sincich (Universitat di Triest),
Sergio Vessella (Universitat di Florence) pai tancj agns di colaborazion
stimolante. Di 16r o ai imparat e o continui a impara tant. Un ringra-
ciament sclet al va ancje ai coleghis plui zovins e entusiascj: Michele
Dilena e Marta Fedele Dell’Oste (Universitat di Udin). In ultin, o vuei
dedica chest lavor al gno cjar ami Pepe, che nus a lassats masse adore.
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2. Modei di nanostruturis in elasticitat linedr cun gradient di defor-
mazion

2.1 Introduzion. Intai ultins decenis, lis struturis inzegneristichis a son
stadis ridotis a dimensions cetant piculis, rivant ae scjale micrometriche
(1 yum= 1075 m) e fintremai ae scjale nanometriche (1 nm= 10" m). La
misure tipiche L des nanoplachis, par esempli, e je ator di 100+ 1000um
(0.1 +1 mm), o fintremai mancul, cun spessor h ~ L/20 + L/10.

Lis peliculis sutilis su scjale micrometriche a son dopradis une vore
in inzegnarie pes 16r proprietats eletrichis, otichis e di durece e resistence
ae corosion. A son presintis intai dispositifs eletronics, tes lints dai ocjai
e tes machinis. I sistemis microeletromecanics e nanoeletromecanics a
son creats par sonda superficiis, studia celulis e neurons, movi microlitris
di fluits, devia fotons inte optoeletroniche. Altris aplicazions dai sensors
a son il rilevament di gas, la diagnosi precoce di malatiis, il rilevament
di mutazions gjenetichis e il secuenziament dal DNA.

Chestis struturis di piculis dimensions a an composizion e forme di
trafs sutli o lastris sutilis. A resistin a cjamis statichis e dinamichis e, inte
plui part dai cas, si deformin in maniere elastiche. Lis lor dimensions
a son tal ordin dai microns e dai nanometris e in chest lavor a saran
definidis come nanostruturis.

Par previodi la deformazion des nanostruturis e je stade doprade
la elasticitat linear convenzional, ma, benza dai agns 90 dal Nifcent, in
tancj esperiments condots in variis cundizions di deformazion a son stats
segnalats fenomens dipendents des dimensions; che si viodi, par esempli,
la rassegne di Fleck a Hutchinson (1997). Inte flession e inte vibrazion
libare des nanotrafs, par esempli, lis deflessions previodudis des teoriis
classichis a son plui grandis, intant che lis frecuencis naturals a son plui
bassis di chés misuradis intai esperiments. Stant che lis teoriis conven-
zionals de elasticitat no an parametris di scjale di lungjece dal material,
chestis a son inadatis a sclari i efiets de dimension. Si che duncje, a
son stadis disvilupadis teoriis di ordin superiér cun ecuazions costitu-
tivis che a contegnin no dome i parametris classics dal material, ma
ancje parametris zontats di scjale di lungjece dal material. O riclamin,
tra chés altris, lis teoriis gjenerals pai materiai cun microstruture elabo-
radis di Toupin (1962, 1964) e di Mindlin e dai siei colaboradors (Mindlin
e Tiersten, 1962; Mindlin, 1964, 1965; Mindlin e Eshel, 1968).
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Il fin di cheste rassegne al e chel di riviodi in curt lis ecuazions co-
stitutivis de elasticitat linear cun gradient di deformazion e di introdusi
modei mecanics semplics di nanotrafs e nanoplachis, che intai paragrafs
sucessifs a saran adotats par analizad problemis inviers specifics su lis
nanostruturis. In particolar, si concentrarin sui materiai isotrops intal
ambit de teorie di Mindlin.

2.2 Materiai elastics linears cun gradient di deformazion. O premetin
cualchi note. Cun {0, X;,X2,X3} o indichin un sisteme di riferiment
Cartesian in R? cun base canoniche {ei}g’zl, e;-ej = 0;; ¢ el X ey = eg,
dula che 9;; al ¢ il delta di Kronecker’s. Achi, - al indiche il prodot scalar
in R3, o sedi a-b = a;b; par ogni a, b € R3, e x al ¢ il prodot vetorial in
R3, osediaxb = dijraibjer, dula che ;5 al ¢ il simbul di Ricci. Di chi
indenant, la sume dai indics ripetiits e je assumude in maniere implicite.
Lis primis derivadis parzials 0 f/0x; de funzion f a son indicadis cun f,
e chel istes pes derivadis di ordin superior.

E sedi B une configurazion di riferiment natural di un solit continui,
dula che B al ¢ identificat cuntun sotinsiemi viert, limitat e conetut
di R3, che al & un contor regolar B che al permet la aplicazion de
integrazion par parts di Gauss-Green. O indichin cun v = v;e; un cjamp
di spostament infinitesimal imponiit su B = BUJB, che al indiis il tensor
di deformazion infinitesimal € = €(v) cun componentis Cartesianis

cij = 5 (015 +v3) (2.1)
e il secont gradient di spostament n = n(v) cun componentis Cartesianis
Nijk = Vk,ij» (2.2)

1,7,k = 1,2,3. Par definizion, o vin
€ij = €jir  Thijk = Njik (2.3)

e, duncje, € e § a an, rispetivementri, 6 e 18 componentis indipendentis.
Si a di nota che € e n a an dimensions diferentis. Di consecuence, di
la des costantis tradizionals de teorie classiche de elasticitat linear, si
spietisi che tes ecuazions costitutivis a sedin presintis costantis zontadis
che a includin fators di scjale. Chestis a son lis costantis di scjale di
lungjece interne.
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Dentri de teorie disvilupade in origjin di Mindlin pai materiai solits
iperelastics linears, si ipotize che la densitat di energjie di deformazion
imagazenade in B e sedi une forme cuadratiche definide positive dai siei
argoments

—_

(Cijpa€pa€is + 2Hijpgrtipar€ij + Bijkpariiparije) ,

(2.4)
dula che il tensor di cuart ordin C, il tensor di cuint ordin H e il tensor
di sest ordin B a sodisfin lis cundizions di simetrie maior

g = Q(Gijﬂh‘jk) = 9

Ciqu = Cpqij? Hiqur = Hpq?“ijv Bijkpqv" = qurijk (2-5)

par ogni 4,7, k,p,q,r = 1,2,3. Cun di plui, lis proprietats di simetrie
(2.3) su € e mjk, rispetivementri, a puartin a chestis altris simetriis
minors:
Cijpg = Cjipg = Cijap,  Hijpgr = Hjipgr = Hijgpr, (2.6)
Bijkpgr = Bjikpar = Bjikapr-
11 stat di solecitazion dal material corispondent a un stat di deformazion
gjeneric (€55, n;;x) al € dat dal tensor di solecitazion intrinsiche o;; e dal
tensor di dople solecitazion intrinsiche T;jy:

g 99
Oii = =04), Tiik = ——(= Tiik)- 27
ij dei; (= 0ji) ijk s (= 7jik) (2.7)
De espression (2.4) de energjie di deformazion, lis ecuazions costitutivis
a son

0ij = Cijpgepg + Hijpgrnipgr,  Tijk = Hpqgijk€pg + Bijkpqrpgr- (2.8)

Di chi indenant, o cjapin in considerazion materiai isotrops, o ben ma-
teriai che par chei la energjie di deformazion g e a di jessi invariante sot
di cualsisedi trasformazion ortogonal Q;; (Q;;jQr; = dir), includudis lis
riflessions, o ben

g(eija nijk) = g(Qmianﬁmna Qmiankanmnp)- (29)

La cundizion (2.9) e impliche che i tensors di elasticitat C, H, B a sodisfin

Ciqu = CmnrstianQrstm
Hiqur = mnsthmianQsthqum (2-10)
Bijkpqr = BlmnstvQliQijnstthqu
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par ogni matri¢ @;; ortogonal. La invariance sot riflessions (par esempli,
det(Q;j) = —1) e impliche che il tensor di cuint ordin H al sparis:

Hijpgr = 0. (2.11)

La espression gjeneral di un tensor isotrop di cuart ordin, che al sodisfe
lis simetriis maibrs (2.5) e minors (2.6), e je

Cijki = N0k + p(0indj1 + dadji), (2.12)

dulad che A e p a son i modui di Lamé. Si che duncje, la ecuazion
costitutive (2.8) pal tensor di solecitazion e je

0ij = Cijriers = 2pei; + Nexr)0ij- (2.13)

Daitir de teorie di Weil (Weyl, 1946; Suiker e Chang, 2000), la espression
gjeneral di un tensor isotrop di sest ordin e je

Bijkimn = €10ij0k10mn + €20;0km O + €303 0knOim+

+ €40i1010mn + €50ik0jmOin + 6051011 01m+

+ 70416 j10mn + €80i10jmOkn + 90516 jnOpm+ (2.14)
+ €100im0k01n + €110im0ji0kn + €120im0jn 0+

+ €130in.0k01m + €140in010km + €150in0jm Ok,

dula che {¢;}15, a son costantis. Lis simetriis maior (2.5) e minér (2.6)
dal tensor B a ridusin il numar di variabilis indipendentis:

simetrie maior (25) —> (13 = €1, Cg = C2, Cl0 = C4, C14 = C12;
prime simetrie minor (2.6) = ¢y = ¢4, c10 = ¢5, €11 = C3,
C13 = Cp, C14 = C9, C15 = C12;
seconde simetrie minor (2.6) = o = ¢1, ¢5 = ¢4, 10 = 7,
C11 = €8, C12 = C9, C15 = C14.
(2.15)
Al ¢ pussibil dimostra che dome cinc coeficients a restin indipendents,
stant che ducj chei altris a puedin jessi esprimtts in tiermins di, par
esempli, {c1,c3,c4,¢8,c9}. Doprant la simetrie (2.3) di 7;;, e dopo
cualchi semplificazion, la ecuazion costitutive (2.8) dal tensor di dople
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solecitazion e je

Tijk — Bijklmnnlmn = (262j77kmm + 5ik77mmj + 5]k77mmz)+
+ ¢30iiNmmik + 2¢4(0ikNjmm + 0jkNimm) + 2¢8Mijk + 2¢9(Nikj + Njki)-
(2.16)

De espression parsore o podin dedusi che, intal insiemi des 18 variabilis
dal gradient di deformazion 7;;, tal cas di materiai isotrops il material
al reagjis in maniere diferente dome a 5 misuris di deformazion costi-
tutivementri indipendentis. A son i doi insiemis di variabilis contratis
Nemm = (V(AivV))k, mmk = Avg, de 16r modalitat di cubiament, e an-
cje des variabilis 7;;, = (V%k)ij, e de 16r modalitat di cubiament. Achi,
divv = v;4, V al & l'operador gradient e A al e 'operador Laplacian.
Cun (2.13) e (2.16), la densitat di energjie di deformazion e presente la
forme no cubiade dade de sume dal tiermin classic g. e dal tiermin di
ordin superior gy ., o sedi

2g(€ij, Mijk) = 29c(€ij) + 29n.0.(Mijk)

29c(eij) = 2ueijeij + Mewr)?,

20h.0.(Mijk) = 4C1iik Memm + C3NiikMmmk + 4CANjEED jmm+
+ 2¢875 jkMijk + 4CoMki ik

(2.17)

che e dimostre che il model di elasticitat isotropiche plui gjeneral al e
caraterizat di siet costantis dal material, ven a stai, i doi modui di Lamé
e cinc costantis di scjale.

Inte sezion sucessive o introdusarin une teorie semplificade dal gra-
dient di deformazion proponude di Yang et al. (2002), Lam et al. (2003)
la che, in presince di ipotesis adeguadis, lis costantis zontadis di ordin
superior a vegnin ridusudis di cinc a tré. Cheste teorie e sara doprade tes
sezions 2.4 e 2.5 par disvilupa un model di nanoplache di Kirchhoff-Love
e un model di nanotraf di Eulér-Bernoulli.

2.3 Une teorie semplificade dal gradient di deformazion. O vin viodiit
te sezion di prime che il model isotropic gjeneral dal material cun gra-
dient di deformazion inte elasticitat linear al a cinc coeficients di ordin
superior. Chescj coeficients a an di jessi determinéts in maniere spe-
rimental e, si che duncje, al ¢ di interes pratic disvilupa teoriis, ancje
semplificadis, cuntun numar minor di costantis costitutivis.
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In leterature e je stade derivade une jerarchie di modei isotropics sem-
plificats di materiai elastics cun gradient di deformazion, imponint ciertis
simetriis zontadis o semplificant lis cundizions; par une analisi complete
si viodi Polizzotto (2017). Il criteri comunementri plui adotat al con-
sist intal introdusi une scomposizion iridusibile adeguade dal tensor dal
secont gradient 7;;; in components ortogonai, che, in maniere tipiche, si
fondin su la ripartizion in components cun olme/cence olme (val a di in
components idrostatiche/deviatoriche) e su la ripartizion simetriche/an-
tisimetriche. In chest lavor, o anin datr de analisi di Lam et al. (2003)
la che la influence de part antisimetriche dal tensor di curvadure e ven
ignorade par ridusi lis costantis di scjale internis di cinc a treé.

O vin di premeti un pocjis di definizions relativis ai tensors di tierg
ordin T cun componentis Cartesianis Tj;y, 4, j,k = 1,2, 3.

La part simetriche ngk di Tj;i e je avual ae sume dai components
T;jx par dutis lis permutazions pussibilis dai indigs i, j, k dividude par
3!

Ty, = é (Tijk + Ting + Tjik + Thji + Thij + Tiki) - (2.18)
La part antisimetriche ﬂ?k di Tjj e je

Tii = Tijr — T (2.19)

Ben si intint che il tensor Tgk par sigur al e invariant sot cualsisedi
permutazion di indi¢ e che i doi tensors Tgk, ﬂ?k a son unics.

Un tensor di tier¢ ordin 755, al ¢ dit cence olme o deviatoric se la
sume des s0s componentis corispondentis a une cubie di indigs e je avual
di zero, par ogni sielte de cubie di indigs (come par solit, i indigs ripetiits
a vegnin sumats):

T;j; =0 parogni ¢=1,2,3,
Tiji =0 parogni j=1,2,3, (2.20)
Ty =0 parogni k=1,2,3.

Cualsisedi tensor T;;; al pues ancje jessi discomponit in mit univoc tant

che

Ty = 7O 4 7

ijk T Lijko (2.21)

dula che Tl(JOk) e je la la part cun olme e Tz(]lk) e je la part cence olme di
T
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Tal ultin, o riclamin il prodot scalar tra doi tensors di tier¢ ordin:

Se SijrTijr = 0, alore S e T a son definits ortogondi.

Lis definizions parsore si aplichin al secont tensor gradient 7;;, =
Uk, La part simetriche (o tensér gradient di slungjament, cun 10 com-
ponentis indipendentis) e la part antisimetriche (o tensér gradient di
rotazion, cun 8 componentis indipendentis) di 7;;, a son dadis di

S 1
ik = 3 (Vkag + Vi + Vjki)
, 1 (2.23)
Mgk = 3 (2Vkij = Vijk = Vjki)
e a son ortogonals:
s A
NijkMijk — 0. (2.24)

O discomponin il tensor gradient di slungjament nfjk inte s6 part cun
olme (3 componentis indipendentis) e inte part cence olme (7 compo-
nentis indipendentis):

0 1
N5k = Mo + i (2.25)
0 1
”z(j) =5 (633t OjkTmmi + Okitlmmy ) (2.26)
s 1

Ancje la part cun olme e ché cence olme di nfjk a son ortogonals. Si che
duncje, o vin discomponiit il secont tensor gradient 7;;; in tré compo-
nentis ortogonals tra di 1or:

0 1 A 0 1 0) A 1) A
Nijk = m(j,i + m(j,i + Mijks n;.,in;»,i = m(j,imjk = m(j,im-jk =0. (2.28)

Il tensor gradient di rotazion 7723’1@ al pues jessi esprimut in tiermins di
un tensor di secont ordin cence olme x;; coincident cu la curvadure

1
Xij = Wij, D Wi = 504KV, (2.29)
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dula che w = w;e; al ¢ il vetor assial de part antisimetriche dal gradient
di spostament, val a diw x a = (Vv — (Vv)T)a par ogni a € R3. Di fat,
di (2.23) e (2.29) o vin

2
ﬁék =3 (Sarixij + Ojrixs) - (2.30)

Cun di plui, doprant (2.29) in (2.27) o podin esprimi i tiermins 1> ..
(0)

che a definissin 7, i come

2
imn Xt (2.31)

S
Nmmi = €i + 3

dula che € = vy, 1, € je la deformazion di dilatazion.
Su la base de rapresentazion (2.28), la scomposizion dal tensor di
dople tension 7;; in (2.7) e pues jessi scrite tant che

Tish = Tup + T + i, (2.32)
dula che lis componentis T(Jok), TZ-(;]g, Ti‘;.‘k a son coniugadis intal sens dal

lavor disvilupat cu lis componentis dal secont gradient ng?;, nl(jl,z, ?7Z ik

rispetivementri, e a son definidis in analogjie cun (2.25) e (2.26):

ngk z(jk) + T( ) (2.33)
70 = ((5 T e+ Ok + OkiTomi) (2.34)
ijk 1) 'mmk mmz kiTmmyg) » .

dula che Ti‘?k e je la part simetriche di 75, e T;;lk = Tijk — 7'5,6 e je la
part antisimetriche di 7;;;. Lis tré componentis di 7;; in (2.32) a son
ortogonals tra di 1or e, cun di plui,

(0)

T

(1)

. Ay e A
ik €Je ortogonal rispiet a Mijks Mijk

TZ(Jlk) e je ortogonal rispiet a 771(?11» nf}k, (2.35)

T{?k e je ortogonal rispiet a 775;),1, nl(]l,i

E duncje, la densitat di energjie di deformazion di ordin superior g, €
pues jessi scrite tant che
1) (1 A A
20h.0. = fjk)m(ﬂi + 7-1'(]']@)771(]’]1 + TijkMijk- (2.36)

21



A. Morassi

Cun (2.27) e (2.33) o vin

3 2
Tz(jolgnz(?lz = 5 ns;mkeyk + gékmnT;—kaan. (2.37)

Doprant (2.37) in (2.36), e doprant (2.30) par esprimi n;;‘.k in tiermins
di Xmn, O otignin

(1, (1)

2h.0. = Ti€,i + TNk + Mij Xij (2.38)
1a che 3 4 5
Ti = STomis Mij = 3 Tipgding + =ik Tk (2.39)

Te ipotesi a priori
mi =0, i,j=123, (2.40)
Lam et al. (2003) a an ipotizat chestis relazions costitutivis di ordin
superior
1 1

mo=2uldeq, T =2ulPn), mS = 2ux3, (2.41)
dula che [y, l1, l» a son tré parametris positifs di scjale dal material e p
al ¢ il modul di tai di Lamé. Pal contribut dal gradient di deformazion
di prin ordin e je stade adotade la ecuazion classiche di Lamé (2.13). Lis
grandecis cinematichis coinvolzudis in (2.41) a son

€ = €k, (2.42)
1y 1 1
Nijk = g(fjk,i + €kij + eij,k) 15 (%(emm,k + 2€mk,m)+ (2.43)
+ 0k (€mm,i + 2€mim) + Oki(€mm,j + 2€mjm))
1
ij = 1(5’ipqwq,jp + 5quwq,ip)- (2.44)

Par completece, o ricuardin che Munch et al. (2017) a an dimostrat che
ipotiza la simetrie dal tensor di solecitazion di cubie tant che in (2.40) nol
va cuintri di nissune leg fisiche fondamental, o sedi che la solecitazion di
cubie e pues jessi sielzude tant che simetriche par semplifica lis ecuazions
costitutivis. Di fat, al ¢ pussibil dimostra che lis ecuazions costitutivis
di Lam a corispuindin a une classe specifiche di materiai cun gradient di
deformazion isotropic, che si viodi Polizzotto (2017).

Te prossime sezion o disviluparin un model di Kirchhoff-Love di
nanoplache basat su la teorie semplificade di Lam.
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2.4 Model di nanoplache di Kirchhoff-Love. Ta cheste sezion o for-
mulin il probleme dal ecuilibri static par une nanoplache sutile in elas-
ticitat linear cun gradient di deformazion doprant lis ecuazions costitu-
tivis di ordin superior (2.41); che si viodi Morassi et al. (2023a).

Tachin de formulazion tridimensional. Assumint che lis azions ester-
nis aplicadis ae configurazion di riferiment natural di un solit continui B
si ridusin a un cjamp di fuarcis regolars fie;, fi : B >R, ¢ =1,2,3, la
energjie total imagazenade in B par une deformazion infinitesimal cun
cjamp di spostament regolar v = v;e; e je dade di

E(v) = /B 9(es3 (V). migi (V) — /B fovid, (2.45)

dula che g = g(eij,miji) € je come in (2.17), cun gp.o (1:jx) tant che in
(2.38). Par dedusi la formulazion debile dal probleme di ecuilibri static,
o imponin la stazionarietat di £ intun cjamp di soluzions di spostament
u: B — R3. Se no vegnin imponudis cundizions gjeometrichis su 0B,
la formulazion debile e assum cheste forme: determiné u cussi che

/B (o1 (w)esj (W) + mi(w)e (W) + 70 (Wl (w) + ms (w) x5 (w))dv =

= / fiwidva
B

par ogni funzion di prove regolar w.

Intal trata nanoplachis sutilis, si interessarin di dominis tridimen-
sionai dal gjenar B = Q x (—t/2,t/2), dula che Q al & un sotinsiemi
viert, limitat e conetiit dal plan R? = {ey, es} che al rapresente il plan
central de plache, e ¢ e je la altece uniforme, cun ¢t << diam(2). O
cjaparin in considerazion dominis €2 cun 6r regolar, par esempli 92 di
classe C%1.

Dair de teorie di Kirchhoff-Love, I'insiemi dai spostaments amissibii
dal pont di viste cinematic al & dat in tiermins di spostament trasversal
w: ) — R tant che

(2.46)

D={v:Qx(~t/2,t/2) = R | v(21,22,73) = —23w n€4 + wes}.
(2.47)
Lis misuris di deformazion e, (v), Z%(v)? ij v) associadis a un dat
v € D a puedin jessi valutadis come in (2.42)—(2.44):

611 = —$3Aw71, 672 = —1‘3Aw72, 673 = —Aw, (2.48)
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1
X =wi, X = 5w —wn), x5 =-w, (2.49)
X X
’178)1 = §(3w7122 — 271)7111), ng% = 33(371)7112 — 2w7222), ete. (2.50)

La liste complete di 7;j;, e pues jessi cjatade in (Morassi et al., 2023a).
Sostituint lis espression di €;(w), 771(;,3:(10), ij(w) te formulazion de-
bile (2.46), dopo une integrazion su la altece e un riordin dai tiermins,
la formulazion debile bidimensional dal probleme di ecuilibri par une
nanoplache sutile e consist tal cjata il spostament trasversal u : 2 — R

in mut che (o, 8,7 =1,2)

/ (—w agMap(u) + w,amﬁzﬁv(u))d:ﬂ = /(—waca + wp)dz,
Q Q

(2.51)
par ogni funzion regolar w : 2 — R,
dula che, cu la notazion ft gdxs = ff{% gdxs,
Co = /faxgdacg, p= /fgdxg. (2.52)
t t

Si a di tigni cont che, par semplifica la notazion, o vin impuestat x =
(x1,22) e de = dxidxs. 1 moments di prin ordin Mg(u) a son dats di
(Ck,ﬁ,")/,d = 172)

Mag(u) = —=(Papys + Plgys)tqs, (2.53)

cun
Popys = B((1 = v)dar085 + V0ap046), (2.54)
Pligys = (2a2 4 501)80r,0ps + (—a1 — az + a0)dasdss, (2.55)

dula che la rigjiditat ae flession B = B(x) de nanoplache e je definide
in tiermins di modul di Young F e il coeficient di Poisson dal material
v tal mut che al seguis

3 X
B = i ) (2.56)
T 2
ao(e) = 2@, an(e) = PO ) = ey, (257
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l; = costante >0, i=0,1,2. (2.58)

Il modul di Young e il coeficient di Poisson a puedin jessi esprimiits tai
tiermins dai modui di Lamé p e A:

p@Cu@ @) @)
PO wnaw 0 T wmm e Y
I moments di ordin superior MZk(U) (i,j,k =1,2) a son dats di
M?]k(u) = Qijklmnu,lmm (2.60)

cun (i,j,k,l,m,n =1,2)
1 1
Qijkimn = g(bo — 301)0;§0knO1m + g(bo — 3b1)0ik(6j10mn + 0jmOim)+

1
+ é(bo — 3b1)0,k(0510mn + Oimin) + Q80kn (0i10jm + dimdji1)+
+ Q9(0jn (9510km + 0imOkt) + 9in(8j10km + djmdrr)),

(2.61)
dula che
2(Qs +2Q9) = by, (2.62)
bo(x) = 2(a) 2. i) = Zu(e) o2 i (2.63)
12 5 12

Par ce che al tocje lis cundizions di eliticitat su lis costantis costitutivis,
sui modui di Lamé o domandin

p(x) > a0 >0, 2u(x)+3A(x) >~ >0 in Q, (2.64)
dula che ag, o a son costantis positivis. Se o indichin
[ = min{ly, l1,l2} > 0, (2.65)
cun (2.57) e (2.63)—(2.65) o vin
ai(x) > tlPaf >0, i=0,1,2, bj(z) > >0, j=0,1, inQ,

(2.66)
dula che ag = %ao e Bg = %ao.
O clamin M?,M? i spazis di Banach dai tensors rispetivementri di

secont e tierc ordin e M?, M3 i sotspazis corispondents dai tensors che
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a an componentis invariantis rispiet a dutis lis permutazions dai indigs
(ven a stai tensors dal dut simetrics). Al sedi, duncje, £(X,Y) il spazi
dai operadors linears limitats tra i spazis di Banach X e Y.

Al e facil verifica che

P e £(M?,M?), P"e £(M?, M?), Q€ £(M® M?3). (2.67)

Cun di plui, par ogni A, B € M2 e par ogni C, D € M3 o vin
PA-B=PB-A, P'A-B=P'B-4, in Q, (2.68)
QC-D=QD-C, in Q. (2.69)

La convessitat fuarte de densitat di energjie di deformazion e je garantide
di chest risultat. Al sedi (D*w);; = wj, (D3w)ijn = w ik, 0,5,k = 1,2.

Leme 2.1. Ipotizin che i tensors elastics P, P e L°°(, £(M2,M2))
e Q€ L®(Q, L(M3,M?)) a sedin ddts di (2.54)—(2.55) e (2.61)—(2.63)
rispetivementri, cun modui di Lamé X, u che a sodisfin (2.64).

Par ogni w € H3(Q), o vin

(P +P"D%w - D*w > t(t* + 12)&p|D*w|?  c.d. in Q, (2.70)
QD3w - D3w > 3 1%¢g| D3w|*  c.d. in Q, (2.71)

dula che &p > 0, {g > 0 a son costantis che a dipendin dome di cg e 7,
el al é stat definit in (2.65).

Par otigni la formulazion fuarte dal probleme di ecuilibri (2.51), o
elaborin I'integral a man ¢ampe di (2.51) integrant par parts e trasferint

lis derivadis de funzion di prove w aes funzions Mug(u), M,z (u) de
soluzion u. Par fissa lis ideis, o calcolin lis cundizions di Dirichlet. 11
probleme di Neumann al sara analizat inte sezion 4.3. Tignint cont de
regolaritat dal contor (o ben, 9 di classe C*1'), da la arbitrarietat di w
o otignin («, 8,7,0 = 1,2)

7h .
{(Maﬁ + MOCﬁ'Y7'Y)7O‘B + Cava + p = O’ m Q’ (272)

U=Up=Upy, =0, in 0,

dula che M,3 = Myg(u) e MZ[M = Mzﬁy(u) a son dats, in maniere
rispetive, di (2.53)-(2.55) e (2.60)-(2.63). Achi, up, up, a indichin la
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prime e la seconde derivade direzional di u dilunc de normal esterne
unitarie n a €.

Par materiai isotrops omogjenis, la ecuazion diferenzial e devente
(Wang et al., 2011)

— diAAu+ d2AAAUu A+ co 0 +p =0, in (), (2.73)
cun
dy=b +2b—2ﬁ 242 (2.74)
1= 200 1= M12 0T i) .
8
d2:B+a0+4a1+a2:B+ut<zl§+15112+l§>. (2.75)

2.5 Model di nanotraf di Eulér-Bernoulli. Te part che e seguis, o adatin
i argoments de sezion precedente par formula il probleme dal ecuilibri
static par une nanotraf. Par semplicitat, o tratarin in maniere separade
la deformazion estensional e ché flessional.

Tachin dal probleme estensional (Akgoz e Civalek, 2014).

Tal trata lis nanotrafs, o lavorin intun domini cilindric B = Qx (0, L),
dula che © al ¢ un sotinsiemi viert, limitat e conetiit dal plan R? =
{e2,e3} che al rapresente la sezion trasversal de nanotraf, e L e je la
sO lungjece, cun L >> diam(f2). O indichin cun {0, X;,X2,X3} un
sisteme di riferiment Cartesian in R cun base canoniche {e;}?_;, origjin
O = (0,0,0) coincident cul baricentri di 2x{z; = 0} e X2, X3 as principai
di inerzie de sezion trasversal 2, o sedi fQ r122d2 = 0. La aree de sezion
trasversal e sara indicade cun A.

Daur de teorie di Eulér-Bernoulli, I'insiemi dai spostaments amis-
sibii in estension dal pont di viste cinematic al e dat tai tiermins dal
spostament assial w : (0, L) — R tant che

D={v:Qx(0,L) =R | v(xy,z2,23) = w(z1)el}. (2.76)

Di (2.42)—(2.44), lis misuris di deformazion €,; (v), 77211(")7 ij (v),i,j,k =

1,2, 3, associadis al insiemi D indicat parsore a son
e1=w", €ez=¢€3=0, (2.77)

X5y =0, (2.78)
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2
sw' o se (ig,k) = (1L, 1,1),
w_]"1, -
Mgk =\ — 511) se (i,j,k) a son permutazions di (1,2,2),(1,3,3),
0 altrimentri.

(2.79)
Inserint chestis espressions te formulazion debile (2.46), dopo di une in-
tegrazion su la sezion trasversal 2 e di un riordin dai tiermins, la formu-
lazion debile unidimensional dal probleme di ecuilibri par une nanotraf
sutile in estension e consist tal cjata une funzion regolar u = v(x)e; € D
cussl che

/0 * W N (o) + 0 NP (o)) = /0 " .

par ogni funzion regolar w : (0, L) — R,

(2.80)

dula che ¢ = [, f1dQ. Si & di nota che, par semplifica la notazion, o vin
impuestat x = x7.

La fuarce assial di prin ordin N(v) e la fuarce assial di secont ordin
N"(v) a son dadis di

N(v) = E*Av', E*=2u+ A, (modul di Young nomindl)

Nh(v) = <2lg + élf) pAV”. (2:81)

La formulazion fuarte dal probleme di ecuilibri e pues jessi otignude
integrant par parts in (2.80) e doprant la arbitrarietat de funzion di
prove w. La scrivin tai tiermins des fuarcis assials N(v) e N*(v) e pes
cundizions al contor di Dirichlet: si trate di cjata une soluzion regolar
v:(0,L) - Ra

N'(v) = (N"(v)" +q =0, in (0,L),

v(0) =/(0) =0, (2.82)

v(L) =7'(L) =

Par materiai isotrops omogjenis, la ecuazion diferenzial e devente
4
E*Av" — (213 + 51%) pAV"" +q=0, in (0,L). (2.83)

O concludin la sezion cu la analisi dal probleme di flession intal plan
X3 — X1 (Kong et al., 2009). L’insiemi dai spostaments amissibii dal
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pont di viste cinematic tal ambit de teorie di Eulér-Bernoulli al ¢ dat in
tiermins dal spostament trasversal (regolar) w : (0, L) — R tant che

D={v:Qx(0,L) — R3 | v(x1, 20, 23) = —23w (71)e1 + w(z1)es}.

(2.84)
Lis misuris di €,; (v), W (v XS (V), 0,5,k = 1,2, 3, associadis al insiemi
nzgk’ i
D a son
€1=—z3w", €3=0, €e3=—-u", (2.85)
1
XTa = Xo1 = —§w”, ij = 0 pes v0s restantis, (2.86)
2 " .. o
- 51'321/ s€ (Zajv k) - (17 ]-7 ]-)>
1
5w” se (i,7,k) = (3,3,3),
4
(1) — 511/’ se (i,7j,k) a son permutazions di (1,1,3),
Nijk =
1
gcvgw”’ se (i,j,k) a son permutazions di (1,2,2),(1,3,3),
1
1—511)” se (i,7,k) a son permutazions di (2,2,3),
0 altrimentri.
(2.87)

Lis espressions ripuartadis parsore a son inseridis te formulazion debile
(2.46) e, daspo di une integrazion su la sezion trasversal €2, la formulazion
debile unidimensional par une nanotraf sutile in flession e consist tal
cjatd un u = —xgu’(x)e; + u(z)es € D regolar, cussi che (x = x1)

L L
/ (—w" M (u) — w"” M"(u))dz = / (—w'c + wp)dx
0 0

par ogni funzion regolar w : (0, L) — R,

(2.88)

dula che ¢ = fQ r3f1dQ, p = fQ f3dSQ.
Lis ecuazions costitutivis dal moment di flession di prin ordin M (u)
e moment di flession di secont ordin M"(u) a son dadis di

M(u) = =Su”", S =E*I, +2uAl} + %MAZ% + nALZ,

4 (2.89)
MM u) = —Ku", K =2ulLi2 + gulglf, I = / z3dQ.
Q
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La formulazion fuarte dal probleme di ecuilibri e pues jessi derivade cu
la integrazion par parts in (2.88) e doprant la arbitrarietat de funzion
di prove w. Pes cundizions al contor di Dirichlet, o vin

M"(u) — (M"(w)" + ¢ +p=0, in (0,L),

'(0) =4"(0) = 0, (2.90)

=
—
=)
~— —
Il
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3. Identificazion di masse basade su risonadoérs in nanotrafs

3.1 Introduzion. In di di vué, la comunitat sientifiche e je atrate dal
s des nanostruturis (nanotubui di carboni, sfueis di grafene, nanofii)
tant che nanosensors. Il motif al & ledt aes carateristichis prometentis
des nanostruturis rispiet a une lungje schirie di aplicazions te sience
e te tecnologjie. I nanosensors a puedin jessi classificats in sis grups
principai: mecanics, eletrics, otics, magnetics, chimics e termics. In
cheste part nus interessin i sensors mecanics e i metodis basats su lis
vibrazions pe identificazion di masse par mieg¢ des nanotrafs (Eom et al.,
2011; Wang e Arash, 2014; Arash et al., 2015).

Il principi fisic si base sul fat che la adesion dal analite su la super-
ficie e modifiche la masse dal sisteme di riferiment. Duncje, monitorant
lis variazions des frecuencis di risonance al ¢ pussibil determina la di-
stribuzion de masse zontade no cognossude. La ipotesi di base e je che
la perturbazion causade dal tacasi di atoms/moleculis estraniis o dal as-
sorbiment chimic/molecolar al puedi jessi descrite dome de perturbazion
de densitat di masse dal nanorisonador. A esistin modei mecanics plui
sofisticats la che te analisi e ven considerade ancje la modificazion simul-
tanie des proprietats di rigjiditat imbinade al aument di masse (Tamayo
et al., 2006). Achi, o trascurarin chescj contribits e o considerarin dome
lis variazions di masse.

La sensibilitat al rilevament di masse e je aumentade in mut signi-
ficatif tai ultins agns. La capacitat di rilevament e je stade ampliade
dal picogram (1072 g) che si jere rivats a rileva tal 2001 al yoctogram
(10724 g, dal stes ordin di grandece de masse dal proton) che si & rivéts
a rileva tal 2012; su chest, che si viodi Li et al. (2015), Tamayo (2015),
Munawar et al. (2019).

Il probleme di identificazion par une singule masse concentrade, mo-
delade come masse puntiforme, tacade su la superficie dal nanorisonador
al e stat frontat in diviers contribtits, tra altris, par esempli in (Tamayo
et al., 2006). In Morassi et al. (2017) al e stat disvilupat un metodi
perturbatif basat su la misurazion de variazion des primis dos frecuencis
di risonance di une nanotraf che e vibre in direzion assial in cundizions
al contor a sbalg. Une estension aes vibrazions di flession e je stade
proponude di Dilena et al. (2019). Bouchaala et al. (2016) al a, invezit,
presentat un metodi par identifica une masse concentrade tacade a une
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nanotraf fissade a lis dos estremitats par miec di une azion eletrostatiche.

I lavors citats parsore a cjapin in considerazion massis concentradis
tacadis al sensor. Dut cas, la masse distribuide zontade che e rapresente
I’analite assorbit e somee che e sedi plui realistiche te pratiche. A chest
fin, o riclamin i lavors di Hanay et al. (2015) e Bouchaala (2018). In
Hanay et al. (2015) e je stade proponude une metodologjie inerzial di
diagnostiche che e permet la identificazion simultanie dal supuart e de
intensitat des massis distribuidis midiant di misurazions in timp real dai
cambiaments des primis frecuencis di risonance di une nanotraf fissade a
une sole estremitat sot vibrazion trasversal. Altris contributs si puedin
cjata in (Sader et al., 2018; Kelleci et al., 2018).

Intune schirie di articui resints, o vin disvilupat un metodi di ri-
costruzion par identifica lis variazions di masse distribuidis a partl di un
numar finit di frecuencis di risonance di un risonador a nanotraf, sedi
sot vibrazion assial (Dilena et al., 2019b,a) sedi sot vibrazion flessional
(Dilena et al., 2020). Achi il metodi al sara descrit par une nanotraf in
vibrazion assial cu lis dos estremitats fissadis, assumint che il coeficient
di masse al sedi a priori cognossit par metat de nanotraf e che la masse
zontade e sedi une picule perturbazion de masse inizial total.

Dal pont di viste matematic, chest probleme al jentre te classe dai
problemis inviers finits miscs par operadors diferenziai di cuart ordin
dal gjenar di Eulér-Bernoulli, stant che un numar finit di autovalors che
a fasin part di un unic spetri al € cognossut e une cognossince parzial dal
coeficient discognossiit e je disponibile. Un risultat celebri di unicitat
par cheste classe di problemis inviers si pues cjatalu za in Hochstadt and
Lieberman (1978). Chest risultat classic al val pai operadors diferenziai
di secont ordin di Sturm-Liouville che a guviernin la vibrazion assial
des astis elastichis classichis, o sedi, Lv = —ﬁv” (x), par une aste
cun rigjiditat assial unitarie e densitat di masse linear p(x). Culi, v(x)
al esprim il spostament longjitudinal in x de sezion trasversal de aste,
x € [0, L], dula che L e je la lungjece de aste. Hochstadt e Lieberman
a an dimostrat che se p(x) al & prescrit su [%,L], alore ducj i infinits
autovalors cun cundizions al contor di estremitats fissadis v(0) = 0 =
v(L) a bastin par determina in mit univoc p(z) on [0, 5].

Intal cas di operadors di cuart ordin, come chel che al guvierne
la vibrazion assial di une nanotraf, par esempli, Lv = %(bvl Vi— "),
cun a, b coeficients di rigjiditat costants positifs e p(x) funzion di den-
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sitat di masse linear no cognossude (che si viodi la ecuazion (3.21);
chi sot), i risultats univocs par p(z) a son pocs e a domandin la co-
gnossince di un insiemi infinit ancjemo plui grant di autovalors. Par
esempli, un risultat classic di Barcilon (1974) al mostre che la determi-
nazion univoche dai coeficients p(z), g(x) dal operadér di Eulér-Bernoulli
Lv = vV — (p(x)v") + q(x)v al domande la cognossince di tré spetris
complets associats a tré diviersis cundizions al contor; che si viodi Glad-
well (2004) par une analisi complete dal probleme. Si rimande ancje a
Schueller (2001) pai risultats di unicitat local relatifs a un operador di
Fulér-Bernoulli par un probleme inviers ai autovalérs di tip misc cun
doi coeficients par, e a Caudill et al. (1998) pal prin studi sistematic dai
insiemis di coeficients isospetrai pai operadors di Eulér-Bernoulli.

Tal studi dal probleme inviers ai autovalors di cuart ordin cun dats
finits a nassin altris dificoltat, che a an la 1or origjin prin di dut de no
unicitat de soluzion e de dificoltat di otigni stimis di eror su la aprossi-
mazion uniforme dal coeficient discognosstt. Al e pussibil dimostra che
chestis stimis a domandin la cognossince di infinits autovalors o, alman-
cul, di une formule asintotiche precise e dats spetrai suficients par otigni
une buine aprossimazion dai dats infinits (Hald, 1978a). Intai cas reai,
nissun di chescj elements al ¢ disponibil. In ogni cas, cundut de lor
impuartance e difusion intes aplicazions pratichis, i studis gjenerai in-
centrats sui problemis inviers ai autovalors cun dats finits a son avonde
pocs. In cheste direzion, il contribut di Barnes (1991) al ¢ iluminant.
Barnes al dimostre che par cheste classe di problemis inviers al ¢ fonda-
mental determina la topologjie plui debile 1a che I'insiemi disponibil di
autovalors al & continui (rispiet al coeficient discognossiit), stant che se
di no si cirares di estrai dai dats spetrai plui informazions di chés che
chei a contegnin. Barnes (1991) al furnis cualchi aprossimazion rafinade
de topologjie plui debile. Inte sezion sucessive 3.2, o riassumin lis ideis
principals e i risultats de impostazion di Barnes.

Ae lus des cuistions ripuartadis chi parsore e ampliant une idee
disvilupade in (Morassi, 2007) pe identificazion dai dams struturai intes
astis classichis in scjale real, il nestri mut di fronta il probleme inviers ai
autovalors cun dats finits si mof di un pont di viste diferent. Assumint
che la variazion di masse e sedi une perturbazion picule de distribuzion
di masse di riferiment de nanotraf in vibrazion assial, il probleme inviers
al ven linearizat ator de configurazion di riferiment. Daspo, lis vari-
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azions di frecuence causadis de variazion di masse a son coreladis cui
coeficients di Fourier gjeneralizats de variazion di masse discognossude,
valutats su la fonde di une specifiche famee di funzions; che si viodi, par
chest, la sezion 3.3. E ven proponude une procedure numeriche basade
suntun algoritmi iteratif di prin ordin e al ven furnit un risultat di con-
vergjence local de ricostruzion; si viodi la sezion 3.4. Par completece, si
a di riclama che la idee di colega i coeficients di Fourier dal coeficient
discognossit cu lis variazions di frecuence e je vecje e e va indatr al con-
tribut fondamental dat ae teorie dai problemis inviers ai autovalors Borg
(1946); par aplicazions numerichis, che si viodin ancje Hald (1978b) e
Knobel e Lowe (1993). A son disponibilis estensions de metodiche ae
variazion di masse gjeneral e ai dats su lis vibrazions di flession che a
saran discutudis inte sezion 3.5.

3.2 Problemis inviers ai autovalors cun dats finits. Inte plui part dai
problemis inviers ai autovalors che si cjatin intes aplicazions inzegne-
ristichis al & pussibil misura dome un numar finit di prins autovalors.
Chest al rint il probleme plui dificil in maniere significative rispiet al
cas dula che si a a disposizion une cuantitat infinide di dats. In cheste
sezion a vegnin ilustrats in curt cierts aspiets gjenerai relatifs ae formu-
lazion matematiche dai problemis inviers ai autovalors cun dats finits. 1
nestris riferiments principai a son i doi articui (Barnes, 1991) e (Barnes
e Knobel, 1995).

3.2.1 Problemis inviers ai autovalors infinits e finits

O disvilupin la nestre analisi in riferiment al probleme di Sturm-Liouville

y” + Ay = Q(:E)yv T e (07 1)a
y(0) =0=y(1),

dula che ¢ : [0,1] — R e je une funzion. Sot minimis ipotesis a priori su
q(z) (par esempli, |¢(x)| limitat in [0, 1]), il probleme ai autovalors (3.1)
al amet une famee numerabile di autocubiis {\,(q),yn(z;¢)}52;, cun
autovalors A\ (q) < A2(q) < ..., limp—100 An(g) = 400, e i corispondents
autovetors yy, (z; q).

Denotin cun ¢*(z) il potenzial no cognossit che o vin di determina,
o0, almancul, di aprossiméa, doprant lis informazions dadis sui autovalors
dal probleme.

(3.1)
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Come che o vin za anticipat inte sezion introdutive 3.1, o podin
distingui dos classis principals di problemis inviers. La prime, che o vin
claméat probleme inviers infinit, e consist tal determina ¢*(z) dal spetri
complet infinit {\,(¢*)}72 ;. La leterature in materie e je imense, che
si viodin, par esempli, i libris di Levitan (1987), Poschel e Trubowitz
(1987), Gladwell (2004) e la rassegne classiche di McLaughlin (1986).
Pe nestre analisi al ¢ util riclama il risultat classic di Hald (1978a), che
al & dimostrat che se doi potenziai ¢(x) e ¢*(z) a son dongje avonde e a
son ducj i doi simetrics in [0,1] (¢(z) = ¢q(1 —z) e ¢* () = ¢*(1 — z) in
[0,1]), alore

o0
lg — " | e o1y < 2+ LOSFSSMHIMES™ 3 () — Au(g)], (3.2)
n=1
dula che M > 0 e je une costante. Chi, L*°([0,1]) al & il spazi des
funzions misurabilis di Lebesgue f : [0,1] — R cussi che [|f|lcc =
ess supyeo,1)|f(2)| < oo cuasi dapardut in [0, 1]. La norme L e riclame
il metodi adotat in tancj problemis di inzegnarie par confronta visive-
mentri dos funzions. La stime (3.2) e mostre che par otigni une aprossi-
mazion uniforme dal potenzial (par) no cognossit ¢*(z) nus coventin une
cuantitat infinide di dats spetrai. Ancje in cheste cundizion une vore fa-
vorevule, la stime di stabilitat (3.2) no je masse utile inte pratiche, stant
che la costante e assum valors cetant grancj ancje cuant che M al e picul,
par esempli, dal ordin di 1.
Ancje cuant che il potenzial nol & simetric, ma avonde dongje a un
potenzial cognossiit, al ¢ in dut cas pussibil fa une stime di stabilitat L?
di ¢ — ¢* come che e a dimostrat McLaughlin (1988):

llg — q*H%2([071}) < 021 (()\n(Q) - )\n(q*))z + n6(rn(q) - rn(q*))Q) )

(3.3)
dula che 7,(q) = |lyn(z; q) H%Q([OJ])/% (0; ¢) a son costantis di normazion
e C e je une costante positive. O ricuardin che, par ogni p, 1 < p <
+oo, LP([0,1]) al & il spazi des funzions misurabilis di Lebesgue f :
[0,1] — R cussi che la norme L” e je limitade, par esempli || f|| 1+ (j0,1)) =

1/
(fol \f|p(:c)dx) s +o00. Ancjemo une volte, la stime (3.3) e mostre che

une cuantitat infinide di dats spetrai e conten informazions suficientis
par determind une aprossimazion L? dal potenzial ¢*.
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I risultats che o vin viodut parsore a domandin la cognossince di
infinits autovalors o, almancul, di une formule asintotiche par stima au-
tovalors di ordin plui grant. I modei matematics dai sistemis in vibrazion
reai a pierdin in curt acuratece te stime dai autovalors di ordin plui alt
e a furnissin stimis precisis dome pai autovalors plui bas. Si che duncje,
lis aplicazions reals a compuartin, par 10r nature, problemis inviers finits
e di cumo indenant si assum che i dats spetrai disponibii a sedin

A= (A, Ao, ..., AN), cun A, = N\, (¢%), n=1,...,N. (3.4)

Il probleme inviers di determina ¢* in mut che A,(¢*) = A,, par ogni
n =1,..., N nol & une soluzion univoche e, duncje, al covente introdusi
une definizion divierse di soluzion. Al ¢ avonde natural domanda che il
potenzial ¢(x) al sodisfi lis cundizions

An(q) = A(q"), n=1,...,N (o, almancul, A\,(q) ~ A, (¢")) (3.5)

e, cun di plui, al sares mior che la identificazion e puartas a une aprossi-
mazion di ¢* cuant che N — +00 (e, tal stes timp, che al fos garantide la
unicitat). Cualchidun di chescj aspiets al sara tratat in curt tes sezions
sucessivis.

3.2.2 Continuitat dai autovalors

La continuitat dai autovalors a pet dal coeficient no cognossut g(x) e je
une cuistion fondamental te nestre analisi e e vignara esaminade chi di
seguit.

Scomencin introdusint 'insiemi dai potenziai. Dade une costante
H > 0, o definin I'insiemi Cy dai potenziai limitats:

Cu ={q:[0,1] = R| [g(z)| < H}. (3.6)
Dotin Cx de norme

1 x x9
lgllazs = /0 /0 /0 a(e1)dardes

Il risultat seguitif al derive di Barnes (1991).

dz. (3.7)
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Teoreme 3.1. Al sedi \,(q) U'n-esim autovalor di (3.1), cun q € Cp.
E esist une costante K (n, H) che e dipent dome din e H, cussi che par
ogni q1, g2 € Cy o vin

[An(q1) = Anlg2)| < K(n, H)llq1 — g2l2p1- (3-8)

Comentin la stime (3.8) e analizin lis s0s consecuencis.

La stime (3.8) e aferme che piculis perturbazions inte norme 2L! di
q a produsin piculis variazions dai autovalors. Si che duncje, la uniche
informazion che e pues jessi estrate di un numar finit di autovalors e
je une aprossimazion L' de funzion fom fot q(s)dsdt. Cun di plui, ogni
metodi che al smiri a dedusi une aprossimazion puntual di ¢(z) doprant
un numar finit di autovalors al sara ostacolat dal malcondizionament
prodot de dople derivazion di une aprossimazion L' a [ fg q(s)dsdt.

Par capi mior il contignut di (3.8) o perturbin il potenzial ¢*(z
cun Ag(x) = acosbz, cun a,b numars reai no nui. Indicant g(x)
q*(z) + Aq(z), un calcul semplig al mostre che

~—

9

1
* a a
lg —q*llorr = ‘b?‘/ ]cosbx—1|dx§2’b—2
0

1
I = *llzs = lal /O |cosbaldz < |al, (3.9)
. 1/2
. |al sin 2b
_ = (1 .
o= o'l =15 (14557

Si pues viodi che ||g — ¢*||or1 al & arbitrariementri picul ancje se a al &
grant cuant che b al ¢ grant (e dal ordin di a, par esempli). Al contrari,
lis normis |l — ¢*||11, [l¢ — ¢* |12, [|¢ — ¢*||L~ a son grandis indipenden-
tementri dal valor di b. Chest al dimostre che une perturbazion a cos bz
zontade a un coeficient ¢* cun a grant e b grant (e dal stes ordin di a)
e produs piculis variazions suntun numar finit di autovalors e, duncje, e
pues jessi considerade ancjemo tant che une aprossimazion ae soluzion
dal probleme inviers intal sens di (3.4). La presince di tiermins che a
ossilin une vore cun amplece grande, tant che Ag(x) = acosbx cun a e
b grancj, e distrug, al ¢ clar, la cualitat di une ricostruzion di ¢*(z). E
cheste e je une grande dificoltat cuant che si a a ce fa cuntun probleme
inviers ai autovalors cun dats finits.

La zonte di dats spetrai che a vegnin di altris cundizions al contor
no garantis une aprossimazion puntual plui acurade di ¢*(z). In realtat,
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cuant che il coeficient al € plui regolar, al pues sucedi che la continuitat
dai autovalors e sedi vere in topologjiis di Cy plui debii de topologjie
indote de norme 2L!. Di consecuence, lis informazions che a puedin
jessi estratis su ¢*(z) a son ancjemo mancul di chés che a puedin jessi
dedotis doprant la norme 2L'. Al & par chest motif che al & interessant
cjata, o almancul aprossima, la topologjie plui debile di Cy 1a che ducj
i autovalors a son continuis a pet dal coeficient ¢(z). Chest pont al sara
calcolat inte sezion sucessive. Infin, o riclamin che, se une topologjie di
Cp e je plui debile di une altre, o sedi e & mancul insiemis vierts, alore e
a plui insiemis compats, e i insiemis compats a an un rul culminatif inte
dimostrazion dai teoremis di esistence pai problemis inviers.

3.2.3 Topologjiis debilis

O sclarin culi parce che al € interessant indebili simpri plui la topologjie
dal insiemi dai coeficients Cgy. Prin di dut, o riclamin cualchi fat fonda-
mental.

Al sedi X un insiemi no vueit. Une famee 7 di sotinsiemis di X e je
une topologjie di X se:

i) 0 e X a fasin part di 7;
i) se O; €r,i=1,...,M, alore ﬂf‘ilOiET;

iii) ae Oy € 7, € J, la che J al & un insiemi di indigs, alore | J ¢ ; Oa €
T7

o ben, la intersezion finide dai elements di 7 e parten a 7 e la union dai
elements di 7 e parten a 7. I elements di 7 a son clamats insiemis vierts
di X. La cubie (X, 7) e je clamade spazi topologjic.

A sedin 7 e 7" dos topologjiis di X. 7/ e je plui debile di 7 se 7/ e je
contignude in 7, o sedi 7/ C 7.

E sedi f: (X,7x) — (Y, 7y) une funzion tra doi spazis topologjics.
f e je une funzion continue se e dome se par ogni insiemi viert V di Y,
insiemi f~1(V) al & un insiemi viert di X.

Cumo, tornin al nestri probleme dai autovalors inviers (cun dats in-
finits) e denotin cun S I'insiemi di dutis lis secuencis infinidis {a1, ag, . . . }
di numars reai. O introdusin la mape

O:Cyp—S, (¢ ={ (g, (q),---, n(q),...} =Aq) (3.10)
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e al sedi ®(Cy) = Sy C S. Suponin che il probleme inviers infinit al
vedi une soluzion uniche. O desiderin inverti ® e determina ¥ = &1,
cun

v:Sy— CH, \I/()\(q*)) = q*, (3.11)

par dats spetrai disponibii A(¢*) = {A\1(¢*), A2(¢*), ..., An(g®),...}. In
particolar, o volaressin che la funzion ¥ e fos une funzion continue, in
mit che picgulis variazions sui dats spetrai a produsessin piculis varia-
zions sul coeficient, o sedi che par ogni insiemi viert V' di Cp, 'insiemi
U~1(V) al fos un insiemi viert di Sy. A clar, la pussibilitat di vé la
funzion ¥ continue e cres al cald dal numar di insiemis vierts di Cpy,
e chest nus da une spiegazion euristiche dal interes di rindi simpri plui
debile la topologjie di Cyy.

O definin une topologjie su Sy doprant il criteri di convergjence par
components: par {¢;} C Cy e ¢* € Cy, o disin che

lim A(gj) =A(¢") <= parogni n>1 sia lim A,(g;) = \(q¥).
J—+00 J—+o00

(3.12)
O definin in Cy la topologjie plui debile 1a che ducj i autovalors a son
funzions continuis dal potenzial, o ben

lim ¢j =¢" <= parogni n>1 sia lim A\, (g;) = \(q").
J—+oo J—+oo
(3.13)

Ae lis de analisi dal probleme inviers finit, che nol pues jessi risolt in
mut univoc, o sin puartats a introdusi cheste definizion. Une secuence
{gn(z)} C Cq e interpole i dats spetrai {\,(¢*)} se par ogni N al esist
€N cussl che

[A(gn) — M(¢7)] < eny parognin=1,...,N, lim ey =0.
N—+o00
(3.14)
Chest teoreme, elaborat di Barnes (1991), al evidenzie la impuartance

di vé une secuence interpolante di coeficients. O introdusin prin di dut
la norme 1Max in Cpg:

lgll1pa2 = max
z€[0,1]

/0 ' q(t)dt‘ . (3.15)

Teoreme 3.2. Suponin che il probleme dai autovalors infinits al vedi

une soluzion uniche par dats spetrdi disponibii {\,(q*)}5%,. E sedi
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{gn(x)} C Cy une secuence cualsisedi che e interpole i dats { A, (q*)}22 ;.
Alore
N1—1>I-I|-1c>o lan — q*[l1maz = 0. (3.16)

Il teoreme al dimostre che une secuence interpolante di coeficients e
converg e che dats infinits (suficients par garanti la unicitat) a contegnin
une aprossimazion uniforme de integral fo‘r q*(s)ds. Irisultats otignits di
Hald e McLaughlin (che si viodin lis ecuazions (3.2) e (3.3)) a dimostrin
in efiets che i dats infinits a contegnin tant plui di chest. In ogni cas,
par otigni une aprossimazion puntual ¢*(x), la aprossimazion uniforme
e a di jessi diferenziade une volte.

Par sfortune, il Teoreme 3.2 no si apliche al probleme inviers finit.
Par chest probleme, difat, i dats disponibii no bastin par calcola N grant
avonde. I Teoremis 3.1 e 3.2 a furnissin une sorte di limit “inferior” e
“superior” (forsit aprossimatif) aes informazions contignudis intai dats
spetrai finits e infinits. In chest sens, il Teoreme 3.1 e je une prime stime
aprossimative de topologjie plui debile di Cy 1i che ducj i autovalors a
son continuis.

O concludin riclamant il fat che, a man a man che il coeficient ¢
al devente plui regolar, al e pussibil costrui topologjiis plui debilis su
Cr li che ducj i autovalors a son continuis. Par esempli, sedi Cg,y/ il
sotinsiemi des funzions ¢ € Cy che a an variazion total al massim V' (o
podin assumi par definizion che une funzion cun variazion total limitade
e sedi la diference tra dos funzions monotonis). Alore e esist une costante
K(n,H,V) cussi che par ogni ¢1,¢2 € Cg,y 0 vin

|)\n(q1) - )\n(q2>’ < K(n7H7 V)HQI - q2||3Ma1‘7 (317)

T T3 To
/ / / q(z1)dxy dxo dxs)|. (3.18)
o Jo Jo

Chest al dimostre che une cuantitat finide di dats e pues produsi, al
. . . . . T I3 T2

massim, une aprossimazion uniforme di [; [;° 37 ¢(#1)dz1 dxy das.

Par cjata une aprossimazion puntual di g(x) al covente deriva tré voltis

cheste aprossimazion uniforme. Cun di plui, pes funzions ¢ € Cg,y cun

|’ (z)| < L, al & pussibil dimostra che

dula che

HQHSMaa: = Imnax
z€[0,1]

[An(q1) = Anlg2)| < K(n, 2,V L)1 = @2l (3.19)
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dula che

1 T4 xs3 X9
lallsr: = / / / / q(z1)dxy dzo das|dry, (3.20)
0 0 0 0

e par riva a une aprossimazion puntuél di ¢ si a di calcola tré derivadis

di une aprossimazion L' di 0““ 61:3 O“ q(z1)dxy dxg dzs.

3.3 Il metodi dai coeficients gjeneralizats di Fourier: teorie. In cheste
sezion o presentin lis basis teorichis di un metodi di identificazion aplicat
a une nanotraf sometude a vibrazion assial, la che o savin a priori che
il supuart de variazion di masse al parten a metat de traf e i autovalors
doprats tant che dats a partegnin a un sol spetri. Inte so6 essence, il
metodi si base suntune secuence iterade di linearizazions dal probleme
inviers intun intor de configurazion di riferiment.

3.3.1 Formulazion dal probleme de identificazion di masse

La vibrazion assial libare infinitesimal ae frecuence (radiant) w = v/A di
une nanotraf no perturbade o referenzial uniforme fissade-fissade (o ben,
fissade a ducj i doi i cjafs) di lungjece L e je guviernade dal probleme
dai autovalors (Akgoz e Civalek, 2014)

!V —av” = Apov, 2z € (0,L),

v(0) =0, v"(0) =0, (3.21)

v(L) =0, v"(L) =0,
Al sedi A Pautovalor e e sedi v = v(z) "autofunzion corispondente. Il
coeficient pg = costante, py > 0, al & la densitat di masse par unitat di
lungjece e a > 0 e b > 0 a son i coeficients di rigjiditat de fuarce assial
di prin e secont ordin, par esempli N(v) = av’ e N"(v) = bv", che si

viodi (2.81) pe espression complete.
La secuence di autocubiis { A, v,(2)}22 di (3.21) e je dade di

)\_mr21 bnﬂ'? B 2 . /nmx

»=(7) [,)0 (” (7) )] C @) = ein (T
(3.22)

dula che e je stade doprade cheste cundizion di normalizazion de masse

L
/ povi(z) =1, n>1. (3.23)
0
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Si a di nota che la secuence {\,}°°; de nanotraf no perturbade e je
discrete in maniere uniforme, o sedi e esist une costante di separazion
o > 0, che e dipent dome dai parametris dal sisteme, cussi che

Mo — M| = 0, (3.24)

par ogni m,n € N, cun m # n. In particolar, un calcul diret al dimostre

che
1 /m\2 T 2
== (Z 2 (7) . 3.25
" <L> [GJF L ] (3:25)
Suponin che la masse par unitat di lungjece de nanotraf e cambii e

denotin cun
p(il?) =po+ TE(:‘U)? x e [07 L]a (326)

la densitat di masse par unitat di lungjece de nanotraf perturbade. O
assumin chestis ipotesis su la perturbazion r.
i) Perturbazion L? e piculece:

<2 /{)L(rg(x))zdx>; = €/0, (3.27)

dula che il parametri di perturbazion € al € un numar real cussi che
0 < € <€, cuntun numar ridot che o sielzarin plui indevant € < 1.
ii) Regolaritat:
re(x) € L*°([0, L]). (3.28)

iii) Limits inferior e superior uniformis:
0<p” <plx)<p*, wzel0,L], (3.29)

cun p=, p*, pT > po + ||rel|oo, costantis indipendentis di e.

La pigulece de variazion di masse 7¢(x) esprimude in (3.27) nus per-
met di calcola sedi perturbazions di picule amplece dadis su grandis
porzions dal interval [0, L] (par esempli, variazions di masse difondudis),
sedi perturbazions cun valors alts concentrats in pigulis parts di [0, L].
Cun di plui, al va notat che il probleme de identificazion de masse intes
nanotrafs al compuarte variazions positivis de densitat di masse pg, o
sedi 7¢(x) > 0 in [0, L]. Al e dificil cjapa dentri chest vincul te nestre
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analisi. Al e stat doprat in (Dilena et al., 2020) par cerni a posteriori i
risultats de ricostruzion.

Segnin cun {A,(p), vn(z; p) }52 4 lis autocubiis (3.21) cuant che il coe-
ficient pg al & rimplacat di p(z), o ben

!V —av” = \pv, z€(0,L),
v(0) = 0, v"(0) =0, (3.30)
v(L) =0, v"(L) =0,

Su la fonde des nestris ipotesis i)-iii), par cualsisedi €, 0 < ¢ <€, il pro-
bleme dai autovalors (3.21) al manten ancjemo lis proprietats dal proble-
me dai autovalors no perturbat, e o segnarin cun {\,(p), vn(x;p)}02 4,
lis autocubiis perturbadis, cun 0 < Ai(p) < ... < Ay(p) < ... e cun
lim;, 00 An(p) = 400. In cheste sezion si concentrarin su chest probleme:

Dade la nanotraf no perturbade, recuperd la masse zontade r(x) de
cognossince dai autovalors finits {\n(p)}2_;.

Visantsi che la cognossince di un singul spetri complet nol e sufi-
cient par determind in mit univoc un coeficient gjeneral r(z) (che si
viodi Schueller (2001) e, pai operadors di Sturm-Liouville Hochstadt e
Lieberman (1978)), o formulin achi un probleme inviers misc datr di tip
Hochstadt-Lieberman cun dats finits, 1a che il coeficient di masse al ¢
cognosstt in metat de nanotraf, o sedi la variazion di masse 7¢(x) e a
supuart contignut in (0, L/2):

supuart(re(z)) = {z € [0, L]| re(z) # 0} C <0, §> . (3.31)

Indichin tant che ddats a priori 'insiemi A des cuantitéats che a definissin
il model di nanotraf no perturbade e i limits inferior e superior uniformis
de densitat di masse dal model perturbat p(z):

A={a,b,po,L,p ,p*}. (3.32)
La costante di separazion o de nanotraf no perturbade e dipent des
cuantitats a priori A, e duncje no je cjapade dentri in maniere esplicite
in A.
3.3.2 Sensibilitat de autofrecuence ae masse zontade

Te part seguitive, o doprarin une espression esplicite de perturbazion
di prin ordin dai autovalors rispiet al parametri €. Visinsi che la n-
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esime cubie di autovalors no perturbade e perturbade a son indicadis
rispetivementri cun {\,,v,} e {\,(p), vn(p)}-

O premetin un risultat di continuitat des autocubiis di (3.30) rispiet
aes L2-perturbazions dal coeficient di masse e une identitat utile.

Teoreme 3.3. Cu la notazion parsore ripuartade, al sedi p;(x) = po +
rei(z), dula che re;(z) al sodisfe (3.27)-(3.29), i =1,2.

Al sedi { n(pi), vn(x;pi)}, n > 1, e sedi la n-esime cubie di auto-
valors di (3.30) pari=1,2.

Par ogni n > 1, e esist une costante C’T)L‘ > 0, che e dipent dome dai
dats a priori e n, cussi che

[An(p1) = An(p2)| < Collor = p2llr2(po,1))- (3.33)

Normalizin lis autofunzions vy (x; p1), vn(x; p2) in mit che

L L
| oo = [ g =1 (3.34)
0 0

e v}, (0; p1)vl(0;p2) > 0, n > 1. Par ogni n > 1, al esist un numar €,
0 < €< 1, e une costante C} > 0 e, sedi il numar sedi la costante, a a
dipendin dome dai dats a priori e n, cusst che

[on (5 p1) — vn(2; p2) || 22(0,27) < Crller — p2lL2(0,1))5 (3.35)

: . 1.
par ogni p1, p2 che al sodisfe |[p1 — pal|r2(j0,0)) < L2E.

Lis cuantitats seguitivis a son definidis tant che diference tra cuan-
titats perturbadis e no perturbadis::

ANy = M(p) = Ay Avy =wp(p) —vn, Ap=p—po=r1,, n>1
(3.36)

Leme 3.4. Par ognin > 1 o vin
L L L
AN, = —)\n/ (Ap)vg — )\n/ Ap(Avy)vy, — A)\n/ po(Avy ) vy, —
0 0 0

L L
—A)\n/o (Ap)vi—A)\n/O (Ap)(Avy,)vy,.
(3.37)
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La identitat che o vin ripuartat parsore e pues jessi otignude molti-
plicant la ecuazion diferenzial in (3.21) (scrite pe n-esime autofunzion no
perturbade vy, (z)) e ché in (3.30) (scrite pe n-esime autofunzion pertur-
bade vy, (z; p)) rispetivementri par v, (x; p) e v,(x), e integrant par parts.
Sotraint i doi tiermins, doprant la simetrie dal operador e la cundizion
di normalizazion (3.23), si oten la ecuazion (3.37).

Doprant lis stimis (3.33), (3.35) inte identitat (3.37), par 0 < € <€,
la variazion di prin ordin rispiet a € dal n-esim autovalor e je dade di

L

M(p) = An — A /0 7 ()R (2)d, (3.38)

par ogni n > 1 e par r. che e sodisfe ancje (3.31).

Comentin la espression (3.38). Come che si spietisi su la fonde de
teorie gjeneral (che si viodi, par esempli, Courant e Hilbert (1966)), la
espression (3.38) e aferme che la zonte di masse e provoche un sbassa-
ment di ducj i autovalors. Cun plui precision, la variazion dai autovalors
(An(p) — Ap) e risulte jessi proporzional a A,. Chest fat al somee che
al vedi une cierte impuartance intal nestri probleme inviers, stant che
la variazion relative dai autovalors e aparis significative ancje par n di
ordin alt. In ultin, al va notéat che la espression (3.38) e je indipendente
des cundizions al contor dal probleme dai autovalors e, duncje, la analisi
e podares jessi slargjade ancje a altris insiemis di cundizions al contor
de nanotraf.

3.3.3 1l probleme inviers linearizat

In cheste sezion o doprarin la sensibilitat dai autovalors determinade in
(3.38) par formula une version linearizade dal probleme inviers intun
intor de nanotraf no perturbade e par cjata une soluzion aprossimade.

Doprant la espression esplicite des autofunzions no perturbadis (3.22)
in (3.38), par ogni n > 1 o vin

L
MNn=1-— )\g(p) = /2 re(x) Py (x)dx,
n 0

Do) = (on(2))? = — sin? ("77)

che al mostre che la variazion relative di prin ordin dal n-esim autovalor
e coincit cul prodot scalar tra la variazion di masse discognossude r(x)

(3.39)
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e I'n-esim element de famee des funzions di influence {®,(x)}o0_;. Ale
propit a chest pont che e jentre in ztc la cundizion a priori (3.31) cemit
che al mostre il leme chi daur.

Leme 3.5. La famee {®,,(x)}5°_, e je une base des funzions di cuadrat

integrabil definidis sul mie¢ interval de nanotraf, par esempli 'insiemi
L?(0,%).

Cheste proprietat e derive dal fat che lis funzions {®,,(x)}°_; a son
. L. . . . 2 L
linearmentri indipendentis e a formin une famee comleete in L (0, 5),
par esempli, par ogni r.(x) € L? (O, %), lis cundizions [ re(z) @, (v)dr =
0 par ogni m > 1 a implichin 7.(z) = 0 in (0, %)
Par determind r(x), une sielte natural sugjeride dal Leme 3.5 e je
ché di rapresenta r.(z) su la famee {®,,(z)}>°_; tant che

re(x) = Z/qu)k(x))([o’%], (3.40)
k=1

dula che x; : R — R e je la funzion carateristiche dal interval sierat
I'CR: xr(z)=1ifzel, xr(x) =0if z € R\ I. I coeficients ()32,
a fasin il rtl di coeficients gjeneralizats di Fourier de variazion di masse
re(x) discognossude valutade su la famee {®,,(z)}°

m=1-
Tes aplicazions reals al ¢ disponibil dome un numar finit di auto-
valors, disin (A7,...,AYF), can N = 10 = 20. Chest nus puarte a

calcola la N-esime aprossimazion dimensional finide de masse zontade:
N

rN(z) = Z,Bkd)k(:c)x[o,%], Br =0 parognik>N+1. (3.41)
k=1

Se o sostituin (3.41) in (3.40) cun A\,(p) = A\,'? par ognin = 1,..., N,
dula che A\;"P al & I'n-esim autovalor misurat, o otignin il sisteme linear
N x N

N
A=Y AupBr, n=1,.,N, (3.42)
k=1

L L
2

Apg = /02 D, () Pk (x)dx = (po4L)2 /0
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n,k =1,2.... I coeficients A, a puedin jessi valutats in forme sierade

2 3
Ank:m fork#n, Ann:m
e un calcul diret al mostre che
1 N
det(A =2N+1) | —= 3.43
ct(u) = N +1) (27 ) (3.43)

_ 2N -1 . _ 2 .

n,k =1,..., M. Si che duncje, il sisteme (3.42) al a la soluzion in forme
sierade che o viodin chi datr

N
2
= 4p2L —7§ ; =1,..,N 44
Bk Po 6)‘/€ 2N+1 - 6A] 9 k 9 9 ) (3 )
e, in ultin,
N 2 N kmx

_ _ . i 2 X

re(x) = 8po 321 Ok SN 11 jEZl OAj | sin ( 7 ) X[0,L]- (3.45)

3.3.4 Une procedure di ricostruzion iterative

La stime di 7. che o vin dat in (3.45) e pues jessi miorade iterant la
procedure di identificazion ilustrade te sezion di prime. Par semplifica
la notazion, chi I'indic € al & stat ometit e \;,"" al indiche il valor misurat
dal n-esim autovalor de nanotraf perturbade. I passags principai de pro-
cedure di ricostruzion e ’algoritmi numeric corispondent a son ilustrats
di file.

Suponin che p(® (x) = po e sedi la masse par unitat di lungjece de
nanotraf di riferiment. La masse discognossude par unitat di lungjece e
je determinade, midiant de iterazion, sul interval [O, %]

P (@) = p) () + (@), j20, (3.46)

dula che l'incressiment

2 2

N
(@) = 8000 (0)xo 2 = BY @D ()xpe ) (347)
k=1
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al ¢ determinat risolvint il sisteme linear N x N
A\ETP N

n _ (4) 5(4)
WrCI P D

k=1

oAU =1 -

n =1,...,N, o, in maniere ecuivalente, in forme compate
AVBU) = §A0), (3.48)

cun B9 = (87, .. 8% e A = (6A{,...,60Y)). Chi, la cubie
A (p9), v (; p( )} e la n-esime autocubie (normalizade in masse) dal
probleme 4

!V —av” = xpWo, € (0,L),

v(0) =0, v"(0) =0,

v(L) =0, v"(L)=0.

Cun di plui, @,(Cj)(x) = vi(z; pY9)) e la matric (Agk)) e je dade di

Suponint la esistence di (AU))~! (che si viodi la prossime sotsezion,
Passag 1)), o vin

r@(z) = (AD)~16A0) .q,(j)(gc)X[O’A] (3.49)

2

e, di (3.46), o otignin

i
Nay=po+ Y rx), j=1 (3.50)

Intes nestris aplicazions, lis iterazions a continuin fin cuant che il coefi-
cient di masse inzornat al sodisfe il criteri

1
N . 2\ 2
1 AP — N\ (plth)

n=

par un picul numar dat .
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3.3.5 Cualchi risultat di convergjence

O vin viodit che il nestri metodi di ricostruzion si base suntune secuence
di linearizazions dal probleme inviers intun intor de nanotraf no pertur-
bade. Chi o calcolin la convergjence dal metodi iteratif mostrat inte
ultime sotsezion. Il risultat principal al ¢ riassumit in chest teoreme.

Teoreme 3.6. Al esist €,, 0 < €, < 1 e €, dipendent dome dai dats
a priori, cussi che se |6A0)| < @ < 1, alore la procedure iterative di
identificazion e conver¢ uniformementri a une funzion p = p(x) che e je
continue in [O, é]

Il risultat al aferme che la procedure iterative e je convergjente, a
cundizion che la variazion di masse discognossude e sedi pigule avonde
e che i autovalors sperimentai a sedin dongje avonde ai autovalors no
perturbats. La dimostrazion si base su tré passacs principai.

Passag i) Esistence de invierse (AU)~1 e limit di [[(AY))~!|| a ogni
pas iteratif j > 1: al derive dal fat che la invierse (A(?))~1 = A~1 ¢ esist
al prin pas de iterazion (che si viodi (3.43)) e che la matri¢ gjeneriche
AU) ¢ je une pigule perturbazion di A.

Passa¢ i) Limitazion di |[6AU)| par controla la soluzion di b() a
(3.49) a ogni pas iteratif j > 1: al derive essenzialmentri di une stime
atente dai tiermins di ordin superiér a un su la bande a drete di (3.37)
in tiermins di |[6A(]. Si oten che |\, (p)) — NeP| < C16AO|? a ogni
iterazion j > 1, dula che C > 0 e je une costante che e dipent dome dai
dats a priori.

Passag iii) Convergjence de serie 72 7()(x) in (3.50): e derive dal
fat che il i-esim tiermin al pues jessi limitat come |7 (z)]| r2(0,0/2) <
CloAD 2 i > 0, dula che C > 0 e je une costante che e dipent dome
dai dats a priori.

Pai detais tecnics de dimostrazion si rimande a Dilena et al. (2019b).

Al e clar che il teoreme parsore ripuartat nol permet dal sigiar di
concludi che la funzion limit p e coincidi in efiets cu la distribuzion di
masse obietif. Di fat, par analogjie cun problemis spetrai inviers analics,
si spietin che la unicitat e sedi garantide dome cuant che a son disponibii
autovalors “infinits”.

I risultats di une serie grande di simulazions, che a saran in part
ilustradis tal paragraf sucessif, a dimostrin che la funzion p e je in efiets
une buine aprossimazion dal coeficient di masse obietif p par variazions
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di masse pigulis e regolars ., al cressi dal numar N des primis frecuencis
naturals cjapadis dentri inte identificazion. In ogni cas, fin cumo, la
teorie matematiche ae base di chest probleme inviers no sclaris parce
che p al risulte jessi dongje dal coeficient di masse efetif p. Un contribiit
al sclariment di chest pont al & presentat intal risultat sucessif.

Teoreme 3.7. Ipotizin che rc(x) al sedi tal di sodisfa lis ipotesis (3.27)-
(3.29), (3.31) e, cun di plui, rc(z) € CH([0,%]) e || 7 Lo, 2) al e
finit. Alore

L
1 (O) f— —
th re(x) = re(z), forz e <0, 5 ), (3.52)

dula che rgo) (z) al denote la variazion di masse determinade al prin pas

de procedure iterative de espression (3.45).

In altris peraulis, il coeficient di masse determinat risolvint il proble-
me inviers linearizat al converc¢ in maniere puntual al coeficient obietif
cuant il numar di autofrecuencis dopradis inte analisi al tint al infinit.

3.4 1l metodi dai coeficients gjeneralizats di Fourier: aplicazion aes
vibrazions assials. In cheste sezion o presentin une selezion dai risultats
otignits intune serie di aplicazions dal metodi dai coeficients gjenera-
lizats di Fourier doprant un numar finit di autovalors che a partegnin a
un singul spetri. Par resons di spazi, la discussion e je limitade a une
famee particolar di perturbazions di masse, in grat in ogni cas di descrivi
situazions impuartantis te pratiche, tant che chés cun variazions di masse
continuis o discontinuis, o cumbinazions des dos. Par une analisi plui
detaiade, si rimande a Dilena et al. (2019b).

3.4.1 Impostazions numerichis e campions di prove

La aplicazion pratiche dal metodi di ricostruzion descrit inte sezion 3.3.1
e domande il disvilup di un codi¢ numeric specific. Il nestri codig si base
suntun model a elements finits de nanotraf, cun aprossimazion poli-
nomial di tier¢ grat dal spostament assial in ogni element finit. A son
stadis fatis provis preliminars su la nanotraf no perturbade par seleziona
une maie adeguade. La plui part des simulazions e je stade fate cun

50



Problemis inviers par nanostruturis

tpo
>
\
\

t1 po

S1

Figure 1: Densitat di masse par unitat di lungjece p = p(x) di identifica.
Variazion di masse soreponude tant che in (3.53).

N, = 200 elements finits ecuidistants, che si son pandiits un bon com-
promes tra precision (erér massim sui prins 15 autovalors, mancul dal
10~* par cent) e cost computazional. Lis matrics di masse e rigjiditats
locéls a son stadis valutadis in forme esate e lis jentradis de matri¢ A a
son stadis determinadis cuntune regule di integrazion trapezoidal. Dute
la procedure, sedi pal probleme diret che par chel inviers, e je stade fate
in ambient Scilab (version 5.5.2). Il timp di calcul necessari par une
iterazion singule dal algoritmi di identificazion par N, = 200 e N = 15
al e stat di 0.5 — 1.0 s. Lis simulazions preliminars a sugjerissin di sielzi
v = 1075 intal criteri di arest e un massim di 10 iterazions si & dimostrat
suficient par otigni la convergjence inte plui part des simulazions.

Il nestri campion al € la nanotraf cilindriche doprade in (Kong et al.,
2009), cun rai r de sezion trasversal circolar ecuivalente par a 50 pum
(= 50-107% m) e lungjece L = 40r. I parametris di scjale de lungjece
dal material si supon che a sedin avuai e fg = f1 = lo = £ = 17.6
pm; il modul di Young FE al di 1.44 GPa; il coeficient di Poisson al ¢
v = 0.38; e la densitat di masse volumetriche e je p,, = 1000 kg/m?>. 1
coeficients a, b, pg corispondents ai parametris parsore indicats a cjapin
si1, in maniere rispetive, il valor a = 11.310 N, b = 3.554 - 107° Nm?,
P0 = Puol - T2 = T7.854-1075 kg/m.
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3.4.2 Cualchi risultat

O ripuartin cualchi risultat rapresentatif relatif ae identificazion di doi
profii di masse zontade sorepontts, un regolar e chel altri di forme trian-
golar, cuntune discontinuitat di salt. Plui di precis, la densitat di masse
di determina e a la espression

p(z) = po + po max {t cos” <7T(xcs)> XTI 2(1‘ — (51— Cl))Xh} 7

(3.53)
dula che I = [s — £,s+ 5], I} = [s; —c1,51] C [0,5]. Lis cuantitéts
c e 1 a son, in maniere rispetive, lis lungjecis dai intervai I e I, e
pot > 0, pot1 > 0 a son lis variazions di amplece massime corispondentis
(Figure 1). I parametris ¢ e ¢; a son stat ipotizats compagns di 0.2L
e la identificazion e je stade fate doprant N, = 200,400 elements finits
ecuidistants, in maniere rispetive par N = 6,9,12,15 e N = 20,25. Al
va notat che, datr i valérs di s; e t1, il coeficient p(z) in (3.53) al pues
jessi continui o discontinui.

(ayN=6 by N=9

exact
identified

15 B 1.5
S oJ\ S //\
= [
8 1.0 3 1.0
=9 o

exact
identified

L L L 0 L L L
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
x/L x/L

©N=12 (d) N=15
20 - - 20 -

exact
identified

15 B 15 |
j/\ < //\
a
1.0 3 1.0
2

exact
identified

L L L 0 L L L
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
x/L x/L

Figure 2: Ricostruzion des variazions di masse soreponude tant che in
(3.53), cun £ = 0.25, t = 0.50, 3 = 0.25, t; = 0.10, doprant lis primis
N =6 - 15 autofrecuencis.

52



Problemis inviers par nanostruturis

La determinazion dal coeficient di masse continui e risulte une vore
precise ancje cuant che inte identificazion a vegnin dopradis dome lis
primis 9 — 12 autofrecuencis. Par un risultat tipic, si rimande ae Figure
2.

In cas di coeficient discontinui, si verifichin ossilazions spuriis in
prossimitat dal salt, cun amplece che e risulte proporzional ae intensitat
dal salt. Di consecuence, la identificazion de part regolar dal coeficient
di masse par valors picui di ¢ e pues deventa imprecise. In chescj cas,
al somee che a coventin almancul 15 — 20 frecuencis inizidls par otigni
une precision acetabile (che si viodi la Figure 3). Il metodi al mostre
ancje une buine capacitat di identifica variazions di masse cun supuarts
diszontats, in particolar cuant che i valors di ¢; e t a son dongje.

3.5 Estension aes vibrazions flessionals. In cheste sezion o slargjin la
analisi dal probleme inviers ae definizion de masse zontade distribuide
in nanotrafs sometudis a vibrazions di flession. In particolar, o calcolin
la situazion plui gjeneral la che la variazion di masse e pues influenca
dute la lungjece de nanotraf, no dome metat dal as, come che o vin fat
inte sezion di prime pes vibrazions assials. O viodarin che pe identi-
ficazion de masse a puedin jessi doprats (almancul) doi spetris parziai,
corispondents a cundizions aes estremitats diviersis (Dilena et al., 2020).

3.5.1 Formulazion dal probleme inviers

La vibrazion di flession libare infinitesimal ae frecuence radiante v/
de nanotraf uniforme no perturbade, di lungjece L e in cundizions aes
estremitats supuartadis, e je guviernade dal probleme dai autovalors
(Kong et al., 2009)

SulV — Ku¥! = Apou, z € (0,L),

(0) =0, —Su"(0)+ Ku'V(0)=0, «"(0)=0, (3.54)
(L)=0, —Su"(L)+ Ku'V(L)=0, «"(L)=0,
dula che A al & l'autovalor e u = wu(z) la autofunzion associade. Il
coeficient pg > 0 al & la densitat di masse no perturbade par unitat di

lungjece. I coeficients costitutifs S > 0 e K > 0 a son stats definits in

(2.89).

u
u
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Figure 3: Ricostruzion des variazions di masse soreponudis tant che in
(3.53), cun £ = 0.15, t = 0.50, %+ = 0.25, t; = 0.50, doprant lis primis
N = 6-25 autofrecuencis.

Lis cubiis di autovalors {\5, w3 (z)}22, di (3.54) a son

611 S 2 nTT
8= [ (e )] = ()
" L Po - (T3]l () poL N AVA
(3.55)
dula che e je stade cjapade in considerazion la cundizion di normalizazion

de masse, n > 1.
Se in (3.54) lis cundizions al contor in x = L a vegnin modificadis in

u' (L) =0, —Su" (L) + Kv¥ (L) =0, Ku"(L) =0, (3.56)
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alore si dis che la nanotraf e je in cundizions aes estremitats supuartade-
scorevule, val a di che une des dos estremitats e je fissade a un supuart
fis (z = 0), intant che ché altre e a un supuart scorevul (r = L). Lis

corispondentis cubiis di autovalors no perturbadis {)\gf,ugf(x)};o:l a

son )\g£:<(2nz—Ll)ﬂ>6{plo<K+((2nigl)r)2>]’

2L
2 2n —1
uS(x) = pOLSin<(n2L)7m)’

(3.57)

cun fOL po(u(z))?dx = 1 par ogni n > 1.

Assumin che la variazion de densitat di masse e sedi tant che in
(3.26) e che r¢(x) la variazion discognossude. Suponin che r¢(x) e sodisfi
(3.27)-(3.29), ma no necessariementri (3.31), par esempli, il supuart di
Te(x) cumo al ¢ un sotinsiemi dal interval intir [0, L].

Segnin cun {\3(p), us (25 p)15, {4 (p), ud(2; p)}2,, in maniere
rispetive, lis autocubiis des cundizions aes estremitats supuartadis (5)
e supuartade-scorevule (S¢) cuant che pg al e sostituit di p(z). O vuelin
costrui une aprossimazion di p(z) o, in maniere ecuivalente, di 7(x),
doprant une cuantitat finide di dats spetrai che a partegnin al spetri
supuartat e supuartat-scorevul, o sedi 'insiemi {\5 () }2_, U (p) M,
dula che N, M a son numars intirs dats.

3.5.2 Il metodi di ricostruzion

La ricostruzion de masse e je otignude tant che gjeneralizazion dal
metodi presentat inte sezion 3.3.1, e si base su linearizazions iterativis
dal probleme inviers intun intor de nanotraf no perturbade. Chi, o lassin
in bande i detais e si concentrin sui passacs principai de analisi.

O scomencin cu la soluzion dal probleme inviers linearizat in pros-
simitat de nanotraf no perturbade, che e je il prin pas de procedure
di identificazion iterative descrite te sezion 3.3.1 pe vibrazion assial. Il
cambiament di prin ordin di un autovalor de nanotraf no perturbade al
e dat di

L L
5AS = / re ()05 (x)dz,  OASC = / r(2)05 (@) de  (3.58)
0 0
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par cundizions aes estremitats, rispetivementri, supuartadis e supuartade-

scorevule, dula che @3 (r) = (115(37))27 P (x) = (u;?f(x))z, n=1,...,N,
m = 1,..., M. Lis espressions (3.58) a puedin jessi determinadis lant

datir dai argoments doprats parsore par otigni (3.39). Ecezion fate par
une costante moltiplicative no essenzial, o vin

{cb;f(x), @%(m)}jmlz {1 = cos<kl7_f”> }:Ol (3.59)

e cheste famee e je une base dal insiemi L?([0, L]) des funzions di cuadrat
integrabil definidis su dut !’interval [0, L]. Al & duncje resonevul ciri
une aprossimazion finide di ordin (N + M) di 7¢(z) su chest insiemi di
funzions, o sedi

N M
re(w) =) BR®n(z) + > Bal®n (), (3.60)
n=1 m=1

dula che {BS }5:17 {ﬁff }Tj‘r{:l a fasin il ril di coeficients gjeneralizats
di Fourier di r¢(x). Chescj coeficients a puedin jessi determinats metint
la espression (3.60) in (3.58) e risolvint il sisteme linear corispondent
(N+M)x(N+M)AB =6\ dulache B=(87,...,8%, B ..., 850,
X = (6A7, ... 0%, SATY, ... 0030), e lis jentradis de matri¢ A a son
definidis come chés de matri¢ A introdote te sezion 3.3.1. Doprant lis
espressions esplicitis di w2 (z), uSf(x) pe nanotraf no perturbade, lis
jentradis de matric A a son A, = p%L par m # ne Ay, = ﬁ,
m,n = 1,.. M 4+ N. L’inviers di A al pues jessi determinat in forme
sierade. Si che duncje, il vetor B al & la espression esplicite

2
S 2 S E E Sﬂ

M
2
St 2 St St
Bl = 2081 | ONY — oy §_1j5A +§. 0N

n=1,..,N,m=1,...,M, e e ven determinade la variazion di masse di
prin ordin. Di file, al & pussibil dopra une procedure iterative analighe
a ché mostrade inte sezion 3.3.1 par identifica la variazion di masse su
dut linterval [0, L]. Il criteri di arest (3.51) al scuen jessi inzornat par
includi un control ancje sul secont spetri.
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3.5.3 Simulazions e risultats

Il metodi di ricostruzion al e stat testat suntune serie slargjade di simu-
lazions cu la variazion di masse soreponude definide in (3.53). Achi in
rie, o discutin in curt i risultats principai par N = M.

Lis proprietats dal material dal campion a corispuindin a chés dal
material epossidic e a son stadis dopradis in (Lam et al., 2003), o sedi,
modul di Young E = 1.44 GPa, coeficient di Poisson v = 0.38, densitat
di masse volumetriche p,, = 1220 kg/m?, e parametris di scjale dal
material fg = £; = lo = ¢ = 17.6 pum. Si supon che la sezion trasversal
e sedi retangolar, cun altece h = 50 um, largjece b = 2h, aree A =
bh, moment di inerzie I = bh3/12, e lungjece L = 20h. I parametris
parsore indicats a puartin a chescj coeficients: S = 4.36 - 1079 Nm?,
K =4.71-10" Nm*, pg = ppor - A =6.1-107% kg/m.

La identificazion de variazion continue di masse e da bogns risultats
e la precision e miore al cressi di N. La definizion dai coeficients di-
scontinuis, tant che previodut, al puarte a diferencis analighis a chés
cjatadis intal cas assial. Par brevitat, si concentrarin dome sui cas la
che la variazion discontinue di masse in (3.53) e je supuartade su doi
intervai diszontats di (0, L). Tal cas di variazions di masse L*°-pigulis
(e, duncje, ancje di amplece di salt pigule), i risultats a son precis avonde
par N = 12 — 15, gjavat un picul interval dongje de discontinuitat, che
si viodi la Figure 4. Cuant che la variazion di masse no je picule e la
amplece dal salt e je paragonabile al valor massim dal tiermin regolar
de variazion di masse (o ancje plui grant), par N fin a 15 a comparissin
ossilazions spuriis che si propaghin in dut l'interval, cuntune amplece
che e decjat lontan dal salt. In chescj cas si oten une precision cressinte
lontan dal salt e incressint IV, par esempli IV fin a 20—25. Infin, cundut il
fat che la convergjence de procedure di identificazion e vedi caratar local
e e domandi di lavora intun intor pigul avonde de nanotraf di riferiment,
al va notat che il metodi al mostre un potenzial inspietat intal trata
variazions di masse no necessariementri pigulis; che si viodi la Figure 5.

3.5.4 Une validazion sperimental

I dats sperimentai sui cambiaments indots de autofrecuence doviits ae
masse zontade tes nanotrafs no son tancj. O vin testat il nestri metodi
sui risultats sperimentai ripuartats in (Hanay et al., 2015). Si rimande a
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Figure 4: Ricostruzion des variazions di masse soreponudis discontinuis
tant che in (3.53) in [0, L]. Parametris: + = 0.35, £ = 0.30, ¢t = 0.10,
F =085 % =030,t =010, cun N =M =6 (a), N =M =9 (b),
N=M=12 (¢), N=M =15 (d).

chest articul par une descrizion complete dal esperiment. In curt, gotutis
di licuit a son stadis deponudis suntune nanotraf a sbalg (o ben, fissade
dome a une estremitat) di Si monocristalin, di lungjece L = 397 um e
sezion trasversal retangolar cun largjece b = 29 um e altece h = 2 pm. O
vin un coeficient di Poisson v = 0.2; une densitat di masse volumetriche
pvol = 2330 kgm™3; e lg = Iy = l. 11 modul di Young E dal material e
il parametri di scjale [p a son stats stimats cuntun confront cu lis primis
cuatri frecuencis di risonance misuradis {f2“?}4_,. O vin cjatat la
soluzion otiméal uniche E°?' = 175 GPa, lgpt = 0.032h. La Tabele 1 e
mostre che lis variazions di frecuence indotis de masse zontade a son, in
medie, plui grancj dai erors di modelizazion valutats su la configurazion
di riferiment. La esperience maduride dai autors su altris problemis
inviers ai autovalors basats su dats finits (par esempli, la identificazion
dai dams in trafs classichis in scjale real, che si viodi Morassi (2007)) e
sugjeris che cheste e je une cundizion essenzial pal suces de identificazion.

Lis seriis di gotutis a son stadis deponudis a cubiis, a parti de estre-
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Figure 5: Ricostruzion des variazions di masse soreponudis discontinuis
tant che in (3.53) in [0, L]. Parametris: + = 0.35, £ = 0.30, ¢t = 0.20,
+ =085 ¢ =030, t; = 080, cun N = M = 6,9,12,15,20,25
autofrecuencis.

mitat libare de traf a sbalg, e a son stadis calcoladis lis sis configurazions
mostradis inte Figure 6. Come che si pues viodi te Tabele 1, che e
je stade dedusude de Tabele 1 in (Hanay et al., 2015), a son stadis
misuradis lis autofrecuencis dai prins cuatri muts di vibra in flession pes
configurazions di riferiment (U) e perturbade (Pi), i =1,...,6.

Une serie selezionade di risultats di identificazion e je mostrade te
Figure 7. I coeficients di masse ricostruits mostrats intes Figuris 7(a,b)
a son stats determinats assumint a prior: che il supuart de variazion di
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U P1 P2 P3 P4 P5 P6

Figure 6: Campion sperimental: configurazions no perturbadis (U) e
perturbadis di masse (Pi, i = 1,...,6) otignudis cun deposizion di seriis
di gotutis di licuit. Riproduzion elaborade di (Hanay et al., 2015).

Tabele 1: Valors sperimentai des autofrecuencis de traf a sbalg mostrade

te Figure 6. U=configurazion no perturbade; valors assolits in Hz e

erors di modelizazion percentuals U% = 100 - ( Uth (U Py / f}zj XP

Pi= i-esime configurazion perturbade, ¢ = 1,...,6; variazions per-
« . . . U
centudls de autofrecuence indotis de masse Pi% = 100 - (fn ™ —

Pi U U,th . .
I Y fn P fn M '=n-esime autofrecuence teoriche no perturbade;
U,exp . . A Piexp
fn " =n-esime autofrecuence sperimental no perturbade; fp =n-
esime autofrecuence sperimental de traf a sbal¢ perturbade Pi. Dats

sperimentai gjavats di (Hanay et al., 2015).

No perturbade Perturbade

U U% P1% P2% P3% P4% Ps5% P6%
17883 0.31 059 1.14 153 2.18 2.67 1.36
112465 -0.04 049 0.77 0.87 094 094 0.7
315158 -0.12 0.41 0.53 0.54 0.58 0.75 0.60
617728 -0.15 0.33 0.36 0.38 0.67 1.07 0.60

=~ w N =3

masse discognossude e sedi de metat diestre de traf a sbalg, par esempli
il sot interval (0.5L, L). La funzion di densitat ricostruide e mostre in
maniere corete grandis incressitis positivis dentri dal ultin cuart de traf
a sbal¢. Il massim de variazion di masse al cres pai cas di P1 a P5,
come si spietavisi, e il supuart de variazion di masse positive si slargje
ancje de estremitat libare bande l'interni. Al € interessant nota che il
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Figure 7: Ricostruzion de masse pe traf a sbal¢ mostrade inte Figure
6 doprant lis primis cuatri autofrecuencis sperimentals e par diviersis
sieltis dal interval di identificazion. Rie superior: [0.5L, L]; rie inferior:
[0.7L, L].

profil di masse ricostruit intal cas P6 al & simil a chel dal cas P2 in
[0.85L, L], e al mostre une altre incressite positive procedint bande il
centri de traf a sbal¢. Par completece, la ricostruzion e je stade fate
ridusint in maniere gradual la dimension dal interval. Lis Figuris 7(c,d)
a mostrin il cas [0.7L, L], che in sostance al conferme i risultats otignits
lavorant su mieg interval. In conclusion, si note che la ricostruzion e je
risultade utile cundut dal numar limitat di autofrecuencis sperimentals
disponibilis. I risultats des simulazions numerichis disvilupadis intes
sezions di prime a sugjerissin che la precision de ricostruzion e miorares
in maniere significative, ancje inte norme L*°, se al fos disponibil un
numar ancje di poc plui grant di primis autofrecuencis (sis-vot). Cun
di plui, i risultats incoragjants otigniits in cheste prove sperimental e
somee che a sugjerissin che la teorie di prime, ché disvilupade pe iden-
tificazion in nanotrafs supuartadis a lis dos estremitats, e podares jessi
gjeneralizade ancje a cundizions aes estremitats diviersis. Chest aspiet
al a, dut cés, di jessi investigat plui a fonts dal pont di viste teoric.
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4. ldentificazion di inclusions in nanoplachis

4.1 Introduzion. Lis nanoplachis a son i components fondamentai dai
MEMS e dai NEMS e il 16r funzionament coret al &€ une carateristiche
essenzial par chescj dispositifs. La domande di prestazions plui elevadis
e dimensions limitadis (dimensions tipichis intor a 1+ 10 x 10~% metris,
o ancje mancul) e pues puartd a stats di deformazion/solecitazion plui
alts e cundizions operativis une vore impegnativis che a puedin cressi
la probabilitat di vuascj struturdi. Cun di plui, dilunc dal proces di
produzion a puedin comparl difiets tant che crevaduris, vueits internis,
mancjance di omogjeneitat tal material e fenomens di abrasion, che a
puedin evolvisi dilunc de vite des nanoplachis, puartant ae ativazion di
vuascj mecanics dal dispositif (Chen et al., 2017; Jalalahmadi et al.,
2009; Yuan et al., 2020). Par chescj motifs, tai ultins timps al & cressiut
I'interes pal disvilup di tecnichis diagnostichis par valuta la presince di
difiets intes nanoplachis, vierzint cussi la strade ae estension dai metodis
fin cumo elaborats pe valutazion di sistemis mecanics su largje scjale
ancje aes dimensions nanometrichis. Par esempli, in Alessandrini et al.
(2024) al e stat cjapat in considerazion il probleme inviers di determina
il coeficient di Winkler intune nanoplache poiade suntune fondazion ela-
stiche, e une stime global de stabilitat di Holder dal coeficient dal sotfont
e je stade dimostrade fasint une misurazion interne singule de deflession
trasversal de nanoplache indote di une cjame concentrade intun pont.

In cheste ultime part di cheste rassegne, o studiin il probleme di
determina, dentri di une nanoplache elastiche isotrope in flession, la
presince di un difiet modelat tant che une inclusion costituide di material
elastic diviers. Sot ipotesis oportunis a priori su la inclusion discognos-
sude, o furnin stimis cuantitativis dal alt e dal bas de aree de inclusion
tai tiermins dal lavor disvilupat dai dats al contor cuant che la inclusion
e je e cuant che, invezit, no je (Morassi et al., 2023b).

Par semplifica la esposizion, inte prossime sezion o introdusin lis
ideis principals e i struments matematics intal contest plui semplic de
condutivitat, la che la impostazion des stimis des dimensions e je stade
disvilupade in origjin di Alessandrini e Rosset (1998), Alessandrini et al.
(2000). Daspo, o passarin a fronta il probleme des stimis dimensionals
pes nanoplachis.
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4.2 Un prototip: stimis di grandece inte condutivitat. In cheste sezion
o anin datr dal tratament presentat inte sezion introdutive di Alessan-
drini et al. (2003) (paragrafs 1.1-1.3).

Premetin cualchi notazion essenzial. Dat un insiemi viert e limitat
U C R" e un numar intir m, m > 1, o indichin cun H™(U) il solit
spazi di Sobolev des funzions misurabilis di Lebesgue f : U — R cun
derivade debile D®f di cuadrat sumabil fin al ordin m, par esempli,
H™U) = {f : U — R] fU]f\Q + ng‘zl\Daﬂz < 400}, dula che
a = (a1, ...,ap), a; > 0 numar intir, || = a1 + ... + ayp, D; = B%i’
D* = Di*...Dg. O indichin cun H~"™(U) il spazi dual di H™(U).

4.2.1 1l probleme inviers

Cjapin in considerazion un condutor eletric cun condutivitat uniforme
o = 1 che al ocupe un insiemi viert limitat 2 C R", cun frontiere di
Lipschitz. Suponin che une inclusion discognossude €2, 0 CC €2, cun
condutivitat o = 2, e sedi contignude, in cas, in ). Dade une (ilensitét
di corint ¢ no identichementri nule sul contor 92, cun ¢ € H2(99) e
faﬂ @ = 0, il probleme diret di condutivitat al consist intal determina
la tension u = wu(z), u € H'(Q), soluzion (a mancul di une costante
aditive) dal probleme di Neumann

div ((1 + xg)Vu) =0, in Q,
(4.1)
Vu-v =y, su 012,

dula che xg e je la funzion carateristiche dal insiemi Q e v e denote la
normal unitarie esterne a 0.

Un probleme inviers che si presente in tancj cjamps de sience aplicade
e de tecnologjie al e chel che al ven clamat probleme di condutivitat
invierse cuntune misurazion. Al consist intal determina €2 cognossint la
densitat di corint ¢ che e agjis sul contor 02 e la corispondente tension
u|pn misurade su 0. Cundut de semplicitat de s6 formulazion, ancje
la cuistion de unicitat di chest probleme inviers e reste un probleme
cence soluzion e impegnatif pe inclusion gjeneral; si rimande, tra altris
contributs, a Isakov (1998) par une rassegne. La unicitat e je garantide
cuant che dutis lis misurazions al contor a puedin jessi fatis, o ben cuant
la mape complete di Neumann-Dirichlet Ng : ¢ € H12(09) = ulaq €
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HY 2(Q) e je cognossude e a vegnin formuladis ipotesis adeguadis su la
topologjie e su la regolaritat de inclusion 2. Chest al & un risultat celebri
di Isakov (1988). A ogni mut, Di Cristo e Rondi (2003) a an dimostrat
che, ancje cuant che e je disponibile la mape complete di Neumann-
Dirichlet, il probleme inviers al ¢ seriementri malponut e la stabilitat
de mape Ng — ) no pues jessi mior che logaritmiche. Di consecuence,
in pratiche, al ¢ impussibil aplica tecnichis di ricostruzion de inclusion
discognossude di dats di contor cun erors.

Tignint cont di chescj aspiets, al & resonevul limita I’obietif dal pro-
bleme inviers dome cuntune misure di contor e prova di stima cierts
parametris che a esprimin la dimension, par esempli la aree o il volum,
de inclusion, trascurant la s6 posizion e forme precisis. L’obietif de
impostazion basade su lis stimis di grandece e je la definizion di stimis
cuantitativis dal alt e dal bas de misure di Lebesgue |S~l| de inclusion in
tiermins di misurazions al contor.

4.2.2 La idee principal

O descrivin achi la idee principal dal metodi. Come te plui part des
tecnichis diagnostichis, al € ben disponi di une configurazion di riferi-
ment dal probleme pal confront. Indichin cun ug € H'(Q) il potenzial
corispondent ae stesse corint di contor ¢ cuant che la inclusion e je
assente:

Aug =0, in €,
(4.2)
Vug-v =1, on dfd.

Segnin cun W, Wy lis potencis necessariis par mantigni la densitat di
corint dade ¢ su 9€2 cuant che € e je, rispetivementri, presinte o assente:

W = up, Wy= / Upp- (4.3)
o0 [2}9)

La potence di riferiment Wy e pues jessi considerade come cuantitat

dade, stant che o podin meti che la soluzion di (4.2) e sedi cognossude.

La ipotesi di fonde e je che la diference di potence |W — Wy| e vares

di jessi sensibile ae inclusion Q. Par verificalu, o podin dopra un reso-

nament sempli¢ basat su la formulazion variazional dai problemis (4.1),
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(4.2). La funzion ug e je la soluzion al probleme minim

Fo(up) = UEI}ILlIilI(IQ) Fy(v), Fo(v)= /QVU -V — 2/89 vp

e e sodisfe
/ Vug - Vo = / v, parogni ve HY(Q).
Q 9

Istessementri, la funzion w e je cussi che

Fg(u) = Uegilr(lﬂ) Fs(v), Fg(v)= /Q(l +xg)Vv - Vo —2 /89 v

/(1 +xg)Vu - Vo = / @u, parogni v € H(Q).
Q [2/9]
Si che duncje, o vin
“Wo = Fiu) < Folu) = Fy(u) ~ [ [Vuf = =W = [ |vul?
Q Q

val a di

~Wo < —W—/~|Vu]2.
Q

Doprant une procedure simile, cheste volte partint di u, o cjatin
W < -Wo+ /~ |Vau|?
Q
e des ultimis dos disavualancis o otignin
/~ Vul> < Wy — W < /~ V2. (4.4)
Q Q

Chest al dimostre che se || > 0 e % 0, alore Wy — W >0, o sedi che
la diference di potence Wy — W e je in efiets sensibile a (2. Di fat, se nol
fos cussi, o varessin Vu = 0 in Q e, pe formulazion debile,

/Vu-Vv:/(1+X§)Vu~Vv:/ ©v, par ogni v € HY(Q) ,
Q Q El9)
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che al impliche che u e je une soluzion di (4.2). Di consecuence, u =
ug + costante. e Vug = 0 in . Stant che |Q2| > 0, chest al impliche, pe
proprietat di continuazion uniche des funzions armonichis, che Vug =0
in Q, chel che al pues jessi dome se ¢ = 0, une contradizion.

Al ¢ pussibil dopra il limit superior in (4.4) par otigni une stime
cuantitative dal bas a |©2|. Se o suponin a priori

dist (€2, ) > do > 0, (4.5)

alore, pes stimis di regolaritat interne,

sup |[Vug|* < Cf W (4.6)
Q
e, in ultin,
~ Wo — W
Q> ————. 4.7
‘ | - 1 WO ( )

La definizion di une stime superior par \S~2| e je mancul semplice. Un
prin ostacul al ¢ rapresentat de presince de soluzion perturbade (4.4),
che e dipent ancje de inclusion discognossude 2. Cheste dificoltat e pues
jessi superade doprant un resonament inzegnos di Kang et al. (1997) che
al disfrute la struture cuadratiche dai integrai di energjie e al permet di
sostitul w cun g cuntun fator 1/2:

1
2/~ |Vug|? < Wy — W < /~ |Vug|? (4.8)
Q Q

Po dopo, la stime dal bas di |Vug|? e je dificile, se no impussibile, stant
che Vug e pues deventa nule dentri di 2. Un mut natural par evita chest
probleme al ¢ sielzi la densitat di corint ¢ al contor in mit che il gradient
nol sparissi, par esempli ¢ = e - v su 0f2, che al impliche Vug = ¢, dula
che e al € un vetor unitari in R™. In ogni cas, cheste sielte e podares no
jessi aplicabile cun facilitat inte pratiche. Cun di plui, la presince di une
condutivitat no dal dut uniforme dal cuarp e domande une impostazion
plui gjeneral dal probleme. Par chescj motifs, un dai temis principai ae
base de impostazion des stimis dimensionals e je la stime cuantitative
dal tas di anulament di |Vug|? intai ponts internis di Q. Chest aspiet
al & delineat inte sezion sucessive e al sara aprofondit pal probleme des
nanoplachis inte sezion 4.6.
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4.2.3 Continuazion uniche

I imprescj principai par controla il tas di anulament di |Vug|? intai ponts
internis di ) a son stimis cuantitativis adatis de continuazion uniche sot
forme de disavualance des tré sferis (Landis, 1963) e de disavualance
di dopleament (Garofalo e Lin, 1986) pes soluzions dal probleme no
perturbat (4.2). Introdusinlis in tiermins locai.

Par ogni 7 > 0 segnin Q = {x € Q| dist(x,00Q) > 7}.

E sedi ug € HY(Q) une soluzion di Aug = 0 in €. La disavualance
des treé sferis e compuarte che par ogni r1,79,73,7, 0 <11 <719 <713 <T,
e par ogni xg € Q5

) 1-9
/ Vuol2 < C (/ |Vu0|2> (/ |Vu0|2> (9)
By (w0) By, (z0) Bry(z0)

duld che C > 0ed, 0 < < 1, a dipendin dome di % e % Par une
funzion ug cjapade tant che parsore, la disavualance di dopleament e

aferme che par ogni r, 0 < 4r < 7 e par ogni xo € Q5

/ Vuol? < c/ Vuol?, (4.10)
Bar (o) By (z0)

dula che C' > 0 e je une costante adeguade che e dipent di ug ma no di 7.
Cumbinant chestis proprietats di continuazion uniche local cuntune altre
formulazion de proprietat di continuazion uniche clamade propagazion
Lipschitz de pigulece , al € pussibil dimostra che se i dats al contor ¢ no
ossilin masse, alore il tas di anulament di |Vug|? dentri di € nol pues
jessi elevat. Plui di precis, si oten che se il cuozient clamat frecuence di
2

1l 3 ooy

Fle] (4.11)

ol z-100)
al & limitat a priori, alore par ogni sotinsiemi compat K di €2 al esist

p > 1 cussi che [Vug| =T si pues integra su K. Si che duncje, si oten
un limit superior su || tant che

1
VVO_I/V) : ’ (4.12)

Q <cf
Al <o (M

dula che p al dipent de frecuence Fgp].
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O specifichin in maniere esplicite che lis stimis che o vin viodiit par-
sore si aplichin a insiemis {2 misurabii in maniere arbitrarie cence re-
strizions topologjichis su la forme e nancje cundizions di regolaritat sul
contor. La uniche ipotesi e je la (4.5).

Dopo cheste part introdutive, te prossime sezion o cjaparin in con-
siderazion il probleme inviers des stimis di grandece par une nanoplache.

4.3 1l probleme diret di Neumann par une nanoplache. Considerin une

nanoplache Q x (—%, %) cun plan median € rapresentat di un domini
limitat di R? e che e & altece costante t, t << diam(f2). O assumin che

il contor 09 di Q al sedi di classe C*! cun costantis ro, My e che
Q] < Myrg, (4.13)

dula che M e je une costante positive. O considerin positif I'orientament
dal contor 0f) indot de normal unitarie esterne n intal sens seguitif. Par
ogni pont P € 99, al sedi 7 = (11, 72) = 7(P) il vetor tangjente unitari
al contor in P otignut tant che 7 = e3 X n.

Adatant i argoments presentats inte sezion 2.4, il probleme di ecuilibri
static par une nanoplache di Kirchhoff-Love cjariade al contor e cence
fuarcis di volum al ¢ descrit di chest probleme al contor di Neumann
(Morassi et al., 2023a, 2024):

———h .
(Mo + Maﬁ»y;y),aﬂ =0, 1in €, (4.14)

—h — —

(Maﬁ + Ma,@'y,'y)@nﬁ + ((MQ,B + Ma,B'y,’y)naT,B)ys + (Maﬁ'yTaTﬁn”/)ﬁS_
7h A~

- (Maﬁﬂ/n’y(TOé,sTﬂ - na,snﬁ)),s =-V, su GQ,

(4.15)
——h ——h
(MO@B + Moa,é"y,'y)nanﬁ + (Ma,B'ynV(Tanﬁ + Tﬁna»,s_ (4 ].6)
—h — °
— M g 1y(Na,sTg) = Mn, su 012,
Mzmnangnw = —]\7[;, su 0€. (4.17)

Si osserve che la procedure doprade par otigni la formulazion fuarte dal
probleme di ecuilibri de formulazion debile (2.51) e je une formulazion
standard, ma e domande une cierte cautele par tigni cont de variazion
de base local (n,7) in presince di contors arcats, un aspiet trascurat
dispés in leterature (Morassi et al., 2023a, 2024). Dopo la integrazion
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par parts, il pont principal al consist intal esprimi lis derivadis secondis
de funzion di prove w ,g su 0f) in tiermins des derivadis normals e de
lungjece dal arc di w su 0£2. Chest al & sclarit in chest leme.

Leme 4.1. Al sedi 0 un domini limitat in R? di classe C? e al sedi
w € H3(Q). Chestis formulis di cambi di variabilis a valin su 0€):

W,qB = W,ss TaTB + Wynn NaNg + Wisn (Tanﬂ + Tﬂna) +

+W,s (TBTass —MBNays ) + Win TBNays s C.d. su OS).

O domandin chestis cundizions di regolaritat sui dats di contor 1%
(fuarce di tai), M, (moment fletint) e M (moment fletint di ordin
superior) che a comparissin intes ecuazions di ecuilibri al contor (4.15)—
(4.17):

Ve H?00), M,ecH®*09), M'eH %09Q). (4.18)

Cun di plui, o assumin lis cundizions di compatibilitat
/ ‘7 =0, / ‘7.@1 + ]\/Znnl =0, / ‘7:6'2 + J/\Znnz =0. (4.19)
o0 o0 o0

Par comoditat dal letér, o riclamin che lis funzions M,g = Myg(u),

MZBW = Mgﬁv(u), a,f,v=1,2,in (4.14)—(4.17) a son, rispetivementri,

lis componentis Cartesianis dal tensor M = (M,z) e dal tensor di ordin
superior M= (MZM), che a corispuindin al spostament trasversal
u(xy,xe), u : Q — R, dal pont (z1,22) = x che al fas part dal plan
median de nanoplache. Par semplifica la presentazion, la dipendence di
chestis cuantitats di u no je segnade in maniere esplicite in (4.14)—(4.17)
e in chel che al seguis.

Indichin cun M* il sot spazi dal spazi di Banach MF dai tensors di
k-esim ordin, k = 2,3, che a an components invariants a pet di dutis lis
permutazions dai indigs (ven a sta tensors simetrics dal dut). Il spazi
dai operadors linears limitats tra i spazis di Banach X e Y al & £L(X,Y).

O assumin che lis funzions M,g a puedin jessi esprimudis tant che

Mo = —(Pagys + Plgas)tns (M = —(P+P")D%0)),  (4.20)

dula che i tensors di cuart ordin P = P(x) € L=(Q, £(M2,M?2)), P =
P (z) € L>®(9, £L(M?,M?)) a sodisfin lis cundizions di simetrie

PA-B=PB-A, cd. in Q, (4.21)
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P'A-B=P"'B-A, cd in Q, (4.22)
par ogni A, B € M2, e la cundizion di convessitat fuarte
(P+PYA-A>3¢|AP?, cd in Q, (4.23)

par ogni A € I\AAIQ, dula che &p e je une costante positive.
Lis funzions Mﬁljk (1,7,k = 1,2) a puedin jessi esprimudis tant che

—h —n
Mijk = QijklmnUimn (M = QD?’U), (4.24)

dula che Qjjrimn a son lis componentis Cartesianis dal tensor di sest
ordin Q = Q(z) € L>®(Q,L(M3,M?)), e Q al & assumiit sodisfa lis
cundizions di simetrie

QA-B=QB-A, cd. in Q, (4.25)
par ogni A, B € M3 , € la cundizion di convessitat fuarte

QA-A>t°¢|AP, cd. in Q, (4.26)

par ogni A € M3 , dula che {g e je une costante positive.

La formulazion debile dal probleme di Neumann (4.14)-(4.17), cun
dats di contor che a sodisfin (4.18) e (4.19), e consist intal determina
une funzion u € H3(Q) (soluzion debile) cussi che

a(u,w) = L(w), par ogni w € H3(S), (4.27)
dula che
—h
a(u,w) = / —Mog(u)w,ap +Ma5,y(u)w,a5,y =
@ (4.28)

= / (P +P")D?u - D*>w 4+ QD3u - D3w,

Q

Lw)=— [ Vw+ Myw,, +Mw,, . (4.29)

o0
Par identificd une soluzion univoche, o assumin chestis cundizions di

normalizazion
/ u =0, / uqe=0, a=1,2. (4.30)
Q Q

O sin cumo in cundizion di aferma la esistence, la unicitat e i risultats di
regolaritats buinis pe analisi. I detais des dimostrazions a son disponibii
in Morassi et al. (2024).
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Teoreme 4.2 (Esistence, unicitat e regolaritat H?3). Al sedi
un domini limitat in R? cun frontiere 02 di classe C*' cun costan-
tis 7o, Mo. Assumin che i tensors P, P € L®(Q, L(M2, M2)) ¢ Q €
L(Q, £L(MB3,M3)) a sodisfin, rispetivementri, lis cundizions di sime-
trie (4.21), (4.22), (4. 25) e lis cundizions di convessitat fuarte (4.23),
(4.26). A sedin i dats V, Mn,M tant che in (4.18) e che a sodisfin lis
cundizions di compatibilitat (4.19).

Il probleme di Neumann (4.14)—(4.17) al amet une soluzion debile
uniche u € H3(Q) che e sodisfe (4.30) e, cun di plui,

sy < € (17l -wr20m) + 76 1Vl =320y + 75 21T | s-120000 )
(4.31)
dula che la costante C' > 0 e dipent dome di %, My, My, &p, &o-

O concludin cheste sezion cuntun risultat global e un risultat miorat
di regolaritat interne.

Teoreme 4.3 (Regolaritat global H*). Al sedi Q un domini limitdt
in R? cun contor O di classe C3' cun costantis ro, My, e che al sod-
isfe (4.13). Assumin che i tensors P, PM € COL(Q, £L(M2,M?)) e Q €
CO’I(Q,.C(M?),M?’)) a sodisfin, rispetivementri, lis cundizions di sime-
trie (4.21), (4.22), (4.25) e lis cundizions di convessitat fuarte (4.23),
(4.26). E sedi u € H3(Q) la soluzion debile dal probleme di Neumann
(4.14)~(4.17) che e sodisfe (4.30), dula che V € H=3/2(09), M, €
H=12(06Q), ]\7,’} € HY2(0Q) a son tils che lis cundizions di compati-
bilitat (4.19) a son sodisfatis.

O vin duncje u € H*() e

lullrs@ < € (1l z-s/2(00) + 75 WMall 17200 + 75 202 | i1/200 )
(4.32)
dula che la costante C > 0 e dipent dome di %, My, M, &p, o,

1Pl B*lcos g 1Ql e -
Teoreme 4.4 (Regolaritat interne miorade). E sedi B, une sfere
vierte R? centrade inte origjin e cun rai o. Al sedi v € H?(B,) cussi

che
a(u, ) =0 par ogni ¢ € H3(By), (4.33)
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cun
a(u,gp):/ (P + P")D?u - D?p 4+ QD?u - D3¢, (4.34)
Bs

dula che i tensors P,P" € CVY(B,, L(M2,M2)), Q € C21(B,, £L(M3, M?3))
a sodisfin, rispetivementri, lis cundizions di simetrie (4.21), (4.22), (4.25)
e lis cundizions di convessitat fuarte (4.23), (4.26).

Alore u € H6(B%) e 0 vin

lull ro(pg ) < Cllull s (s,), (4.35)

dula che C > 0 al dipent dome di t, &p, &q, HP‘|(11,1(B*U): H]P)thlyl(Bfg);
1@ .

4.4 Stimis di grandece par nanoplachis. Par semplifica la presentazion
dai risultats, o calcolarin dome che il cas di inclusions elastichis costi-
tuidis di material plui duar rispiet al material che i sta ator. Il cas di
inclusions plui fofis al pues jessi analizat in mut simil e nol introdis
elements gnifs sostanziai (Morassi et al., 2023b).

4.4.1 1l probleme inviers

Suponin che al sedi pussibil che une inclusion Qx (—%, %) e sedi presinte
intune nanoplache 2 x (—%, %), dula che 2 al e un sotinsiemi misurabil,

pussibilmentri disconetut, di €. N N

O cjapin in considerazion i tensors di elasticitat P, P, P, Ph €
L%°(Q, £L(M2,M?)) e Q, Q € L (9, £(M3, M3)), che a sodisfin, rispetive-
mentri, lis cundizions di simetrie (4.21), (4.22) e (4.25).

O introdusin altris ipotesi a priori sui tensors di elasticitat. Prin di
dut, metin che il material de nanoplache di riferiment (che al cengle la
inclusion) al sedi isotrop, o sedi che lis componentis Cartesianis di P,
P", Q a sedin dadis di (che si viodi la (2.4))

Popys = B((1 = v)day085 + V0ap04s), (4.36)

Phﬁwé = (2a2 + 5(11)5047566 + (—a1 —az2 + ao)(sag(sm;, (4.37)

«
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1 1
Qijkimn = g(bo — 3b1)0i0knOtm + g(bo — 3b1)0ik(0510mn + SjmOim)+

+ %(bo — 3b1)0,%(0i10mn + 0imOin) + Q80kn (8i10jm + dimdj1)+
+ Q9(0jn (9510km + 0imOk1) + 0in(8510km + djmdrr)),
(4.38)
dula che 2(@8 + QQQ) = 5by.
Dair des ipotesis a priori formuladis parsore, o savin che la rigjiditat
ae flession (par unitat di lungjece) B = B(z) e je dade de funzion

t3E(x)

B) = ma @y

c.d. in Q, (4.39)

dula che il modul di Young F e il coeficient di Poisson v dal material a
puedin jessi esprimits in tiermins dai modui di Lamé p e A come

@@ @) A@)
Po=""ww 0 "y 4

I coeficients a;(z), i = 0,1, 2, a son dats di
a0(x) = ()i, an(x) = Sp(@)il, o) = p()iB ed i Q,
(4.41)

dula che i parametris di scjale dal material /; a son assumits come costan-
tis positivis (Morassi et al., 2023a). O indichin cun

[ = min{lo, ll, lQ} (442)
I coeficients b;(z), i = 0,1, a son dats di

¢ 2
bo(z) = 2u(z) =1, bi(z) = Zp(z)—=I1} cd in Q. (4.43)
12 5 12

In secont lic, o assumin che p a A a sodisfin lis cundizions di eliticitéat
wx) > a9 >0, 2u(x)+3Xz)>v% >0 cd in Q, (4.44)

dula che ag, 7o a son costantis positivis. Di (4.41), (4.43) e (4.44) o vin
ancje

ai(z) > tl2ag >0,i=0,1,2, bj(x) > t31253 >0,5=0,1, cd. in Q,
(4.45)
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dula che aff = Zag e B} = 5a0. Si che duncje, di (4.44), (4.45) o
otignin chestis cundizions di convessitat fuarte su P + P" e Q (che si

viodi il Leme 2.1 te sezion 2.4). Par ogni A € M? o vin
(P+PMYA-A>t(t? +12)&|A? cd. in (4.46)
par ogni B € M3 o vin
QB - B > t31%¢|B*> c.d. in (4.47)

dula che &p, {g a son costantis positivis dipendentis dome di ag e .
In tierc¢ ltic, metin che la inclusion discognossude e sedi costituide
di material “plui dar” a pet dal material de nanoplache ator ator de
inclusion intal sens seguitif (limitazions sui salts):
a esistinn >0,7>0ed > 1,5 > 1 tai che

nP+P" < (P+P")— (P+P") < (§—1D(P+P"), cd in Q, (4.48)

Q<Q-Q<(-1Q, cd in Q. (4.49)
Chi, nQ §A@ — @ al val di che 7QA - A < (@ — Q)A - A par ogni
A € L(M3,M?3), e chel istes pai tensors di cuart ordin. L
O precisin che lis ipotesis fatis parsore a garantissin che P + P" e Q

a son conves in sens fuart c.d. in €.
Infin, par ce che al tocje la regolaritat di P, P" e Q, o assumin che

P, Ph ¢ C1 1(Q) e Q € C%1(Q), cun
1Pl e, 1@+ HPthll +""02||Q||c21 < Marg, (4.50)

cun Ms dipendent di =, =

’r‘o’ 7'0
I dats al contor che a comparissin in (4.15)—(4.17) a son assumuts

tai di sodisfa lis cundizions di compatibilitat (4.19) e di jessi cussi che
Ve H3200), M,eH Y209), M'eHY*0Q). (4.51)

Di chi indenant, o indichin cun w, wug lis soluzions dal probleme di
ecuilibri pe nanoplache (4.14)—(4.17) cun e cence inclusion, o sedi u €
H3(Q) e je la soluzion di (4.14)—(4.17) cuant che M (u) = —(XQ\Q(]P’ +

P") + xg(P + P)D%u, M (1) = (x0qQ + xgQ)Du e ug € H3(Q)
e je la soluzion di (4.14)-(4.17) cuant che M(ug) = —(P + P") D2y,
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Mh(uo) = QD3ug. O ricuardin che u e ug a son determinats in mit uni-
voc des cundizions di normalizazion (4.30) e notin che i dats al contor
‘7, ]\/in, ]\/Iff associats al probleme par u e ug a son i stes.

O introdusin cumo il lavor esercitat da dats al contor cuant che la
inclusion (2 e je, rispetivementri, presinte o assente:

W =L(u) = —/ Vu+ Myu,, —I—J/W\fju,nn , (4.52)
o0

Wy = L(UO) = — ‘//\.uo + ]/\Znut),n -+ ]/\IT}LLUQ,nn. (4.53)
0N

Chescj lavors a coincidin cu la energjie di deformazion imagazenade inte
nanoplache deformade, o sedi

W = / (Xgna(P+P") + xg(P +P") D?u - D?ut
@ N (4.54)
+ [ (@ + xg@ D% D

Wo = / (P + ]P)h)DQUO : D2u0 + QDSUO . DSUO. (4.55)
Q

4.4.2 Risultats principai

I doi teoremis seguitifs a dan dongje i nestris principai risultats relatifs
aes stimis di grandece pes nanoplachis cun inclusions duris; si viodi
Morassi et al. (2023b).

Teoreme 4.5 (Limit inferior di Q). Al sedi Q un domini limitat
in R? cussi che O al sedi di classe C*' cun costantis ro, My e che al
sodisfe (4.13). Al sedi Q, Q CC Q, un sotinsiemi misurabil di Q che al
sodisfe

dist(€,09) > doro, (4.56)

dula che dg > e je une costante. 0 assumin che i tensors P, P", fb, P e
L>(Q, L(M2, M?)) e Q, Q € L*°(Q, L(M3,M?)) a sodisfin lis cundizions
di simetrie (4.21), (4.22) e (4.25), lis cundizions di convessitat fuarte
(4.23) e (4.26), e lis cundizions di salt (4.48)—(4.49). Cun di plui, o
assumin che i tensors P, P*, Q a sedin tdi di sodisfd lis cundizions di
regolaritdt (4.50).
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O vin

W )
dula che la costante Cf e dipent dome di %, My, M, do, &p, {, Mo,
5, 6.

Q| > Cfr? (4.57)

Teoreme 4.6 (Limit superior di [Q|). Al sedi Q un domini limitat in
R? tdl che O cussi che al~segi di classe C*' cun costantis ro, My e che
al sodisfi (4.13). Al sedi 2, Q CC Q, un sotinsiemi misurabil di 2, che
al sodisfe

dist(Q,09Q) > doro, (4.58)

dula che dy e je une costante positive. O assumin che i tensors P, PP €
CLL(Q, L(M2,M?)) e Q € C21(Q, L(M3,M3)) a sodisfin, in maniere
rispetive, lis cundizions isotropichis (4.36), (4.37) e (4.38) e che i modui
di Lamé p e A a sodisfin lis cundizions di convessitat fuarte (4. 44)
O assumin P, P" € L®(Q, L(M2,M2)) ¢ Q € L=(, L(M3, M?)) e
assumin lis cundizions di salt (4.48)—(4.49).

O vin 1
~ Wo — W\ 7
dula che lis costantis 02 ep>1 a dipendin dome di = e TO , My, My,
do, a0, Y0, Mo, 1,7, 8, 6 e dal rapuart
_ ||‘7||H*3/2(6Q) JrTal||]\/4\n||Hfl/2(asz) +T62||]\/4\3||H1/2(69) (4.60)

IVl ir-5/200) + 7o I Ml gr-s/2(00) + 70 2 I1ME I gr-1/2 00

4.5 Leme de energjie e dimostrazion dal limit inferiér. Premetin chest
leme de energjie, che al aferme che la diference di lavor |W — Wy e je
stimade dal alt e dal bas de energjie di deformazion de soluzion no
perturbade ug imagazenade inte inclusion Q.

Leme 4.7 (Leme de energjie). Assumin che Q al sedi un domini
limitat in R2, tal che O al sedi di classe C*1'. Assumin, po, che Q
al sedi un sotinsiemi misurabil di Q. Assumin che i tensérs P, PP,
P, P € L®(Q,L(M2,M?)) ¢ Q, Q € L>®(Q, L(M3,M3)) a sodisfin,
rispetivementri, lis cundizions di simetrie (4.21), (4.22), (4.25). E, in
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ultin, o assumin che &, &1, &o, €1, 0 < & < &1, 0 < & < &1, a sedin tdi
che

36| A2 < (P(z) + P (2)A- A < B3 |AP? cd. €, (4.61)

t9¢|B|> < Q(x)B - B < t°&|B> c.d. xz €, (4.62)

par ogni matri¢ A € M2 e B € M3. O assumin che i salts (Iﬁ’ + Iﬁ’h) —
(P +Ph), Q — Q a sodisfin (4.48)(4.49). E sedi u,ug € H*(Q) la
soluzion debile al probleme (4.14)-(4.17), normalizade come in (4.30),
cuant che la inclusion §Y e je, rispetivementri, presinte o assente, pai
dats di Neumann V € H=%/2(0Q), M, € H-3/2(0Q), M" ¢ H-/2(5Q)
che a sodisfin lis cundizions di compatibilitat (4.19).

O vin

”*50* / |D2ug|? + 2| D3ug|> < Wo — W <
(4.63)
SGV—naﬁﬁuﬂwF+ﬂD%w,
0

dula che m, = min{n, 7}, 6 = max{5,8}, o« = min{&y, &y}, & =
max{&1, & }.

Note 4.8. Notin che se 1 materiai che a costituissin la inclusign Qeil

material ator in © \ © a son isotrops cun modui di Lamé g, A e pu, A,
rispetivementri, alore lis cundizions di salt (4.48), (4.49) a puedin jessi

scritis tai tiermins de diference 1 — p e k — K, dula che k = %ﬁ?’\),
m
jo — 2(2ut3))
2u+A

Dimostrazion dal Teoreme 4.5. Stimin la bande a man drete di (4.63).
O notin che al esist d*,0 < d* < dy, che al dipent dome di My, cussi che
Qq+r, al ¢ di classe Lipschitz cun costantis yrg, 7' Mo, dula che 0 < v < 1
e v > 1 a dipendin dome di My, e Q@ C Qg+,; che si viodi Gilbarg e
Trudinger (1983, Leme 14.16) pai detais. Pal Teoreme di Imersion di
Sobolev (Adams, 1975, Cjapitul 5, Teoreme 5.4)

Wo—W < Crg’/~ |D2ug|? + r3| D3up|? < (4.64)
Q

< Crdjfl (ID%ul. )+ 7BID IR ) < O Bl
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O osservin che, cun un argoment di cuviertidure e stimis di regolaritat
interne (4.35), o vin

1
2 2
HUOHHfJ‘(Qd*TO < C%HUOHH3(Q) . (4.65)

Duncje, des (4.64) e (4.65), de disavualance standard di Poincare
(Morassi et al., 2007, Proposizion 3.3), cun (4.46), (4.47) e (4.55), o
otignin

1 ~ ~
Wo—W < O—[8llualfne) < ol [ 1Du0f + rED*ul? <

Q C ~
< C% / (P +P")D?ug - D*ug + QD ug - D*ug = — Q| W(4.66)
o Ja i

dula che C > 0 al dipent di dy, 8,6, -, M, M, &p, £, M2. Duncje, e ven

707

datr la stime (4.57). O

4.6 Continuazion uniche e dimostrazion dal limit superiér. Come che

o vin premetit inte sezion introdutive, il limit superiér di |§\ al domande
stimis cuantitativis de continuazion uniche pe soluzion uy al probleme
no perturbat. Scomencin riclamant inte Proposizion 4.9 i elements fon-
damentai di chestis stimis sot forme di disavualance des tré sferis e
disavualance di dopleament local pe matri¢ Hessiane de soluzion; par
plui detais e dimostrazions si viodi Morassi et al. (2024).

Proposizion 4.9 (Disavualance di dopleament e disavualance
des tré sferis pe Hessiane). Assumin che i tensors dal material
P,P" ¢ CLY(By, L(M2,M2)), Q € C21(By, L(M3,M?3)) a sedin dats di
(4.36), (4.37), (4.38) e che a sodisfin, rispetivementri, la cundizion di
regolaritat (4.50), lis cundizions di convessitat fuarte (4.46), (4.47). As-
sumin che ug € H%(By) e sedi la soluzion debile a (4.14).

Al esist alore C' > 1, che al dipent dome di Ma, ag,v0,t,1, cussi che,

parogni0<r<2RT110vin

/ |D2uo|* < ON** [ |D?u|?, (4.67)
2r 7
dula che H H2
o D uQ LQ(B )
N = HDQUOH2 (4.68)
L2 (BR1/29>
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ek=S8.
Cun di plui, se 2r < s < 5%1 alore o vin
1-0(s,r) 9(s,r)
/ | Duo|” < (C/ |D2u0\2) (/ \D2u0}2> , (4.69)
Bs Br, 2 B,
dula che )
O(s,1) = ——=—— (4.70)
1+ 6k logy -

cun k = 8.

Par otigni il limit superior desiderat, o doprin ancjemo il Leme de
energjie 4.7. In ogni cés, tal stima la integral [5 |D?ug|? + |D?ug|? dal
bas, si a di fronta il pussibil anulament di D?uy e D3uq intai ponts
internis. A chest fin, un strument fondamental al ¢ un risultat di con-
tinuazion uniche, cognossiit tant che propagazion Lipschitz de piculece.
La s6 dimostrazion si base prin di dut suntune iterazion de disavualance
des tré sferis (4.69).

Proposizion 4.10 (Propagazion Lipschitz de pigulece). Al sedi ()
un domini limitat in R?, cussi che 09 al é di classe C*Y, cun costan-
tis ro, Mo, e che al sodisfe lis cundizions (4.13A). Assumin che il tensor
P,P" ¢ CHY(Q, L(M2,M?)), Q € C>1(Q, L(M3,M?3)), al sedi dat, ri-
spetivementri, di (4.36), (4.37) e (4.38) e che al sodisfi la cundizion
di eliticitat (4.44). E sedi ug € H3(Q)) la uniche soluzion dal proble-
me (4.14)—(4.17) normalizade di (4.30), cun ddts di Neumann V €
H_3/2(6(2),]\//7n € H_1/2(8Q),]/\4\,’;° € HY2(0Q) che e sodisfe la cun-
dizion di compatibilitat (4.19). Al esist x > 1 che al dipent dome di oy,
Yo, Mo, % e % cussi che par ogni s > 0 e par ogni x € 4, 0 vin che

J

dula che Cys > 0 al dipent dome di My, My, %, %, oo, Y0, M2, s e dal
rapuart di F dat in (4.60).

D2ug|? > 05/ D2up? (4.71)
Q

sro(z)

La propagazion Lipschitz de piculece e je utile par otigni une disa-
vualance di dopleament pe Hessiane de soluzion ug in tiermins di dats
al contor.
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Proposizion 4.11 (Disavualance di dopleament pe Hessiane in
tiermins di dats al contor). Sot de ipotesi dal Teoreme 4.6, o as-
sumin che ug € H3(Q) e sedi la soluzion uniche a (4.14)-(4.17) che e
sodisfe (4.30), cun V, M\n,]/\if{ che a sodisfin (4.18) e (4.19). E esist une

costante 6,0 < 6 < 1, dipendente dome di ag,~yy, Mo, %, %, cusst che
par ogni ¥ > 0 e par ogni o € Qpy,, 0 vin
/ D2u|? < K | D2ug|? (4.72)
B27(330) BT(‘TO)
par ogni 1,0 < r < Fro, dula che K > 0 al dipent dome di o, Yo, Mo,
My, My, 7, 7”0’ % e dal rapuart F dat di (4.60).

Dimostrazion de proposizion 4.11. Aplicant un argoment di riscjalament
a (4.67) e (4.68), e esist une costante assolude 6,0 < 6 < 1 cussi che par
ogni 7 > 0 e par ogni xg € Q, 0 vin

/ D%y < K | D%ug|? (4.73)
Bar(z0) By (z0)

par ogni r,0 < r < gfro, dula che la costante K > 0 al dipent dome di

g, Yo, Mo, %, % e 7 e in mut cressint dal rapuart

2, 12
fBﬁO(mO) | Do

| D2ug|?

N = (4.74)

me (z0)

29
Aplicant (4.71) par limita dal bas il denominador, otignin il limit desi-
derat. O

Infin, par dimostra il limit superior al covente introdusi un argoment
sofisticat che al ven de teorie dai pés di Muckenhoupt (che si viodi la
Proposizion 4.12) basat soredut su la disavualance di dopleament (4.72).

Proposizion 4.12 (Proprietat A,). A sedin sodisfatis lis assunzions
a priori de Proposizion 4.11. Par ogni 7 > 0 al esist B > 0 ep > 1
cussi che par ogni o € Oz, 0 vin

1 1 r
D2u 2 D2U 72/(1071) <A,
<|B< I o) °’><\B< I Jpsiany P!

v_

par ognir, 0 <1 < 5770, (4.75)
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dula che ¥ al é come te Proposizion 4.11 e dula che A, p a dipendin
dome di ag, Yo, Mo, My, My, 7, -, L e dal rapuart F ddt di (4.60).

7 g’ 1o

O riclamin doi risultats tecnics che a saran utii inte prossime di-
mostrazion.

Si a cheste disavualance di interpolazion (che si viodi il Teoreme 7.25
in Gilbarg e Trudinger (1983): par ogni u € H4(), o vin

1 1
lull sy < Cllul ey el Zraen (4.76)
dula che C' > 0 al dipent dome di My, M;.

Leme 4.13. Al sedi Q un domini limitdt in R? cussi che O al ¢ di classe
C31 cun costantis o, My che a sodisfin (4.13). O assumin che P,P" ¢
L°°(Q,C(M2,M2)), Q e LOO(Q,E(M3,I\//\[[3)) al sodisfi lis cundizions di
simetrie (4.21), (4.22) e (4.25) e lis ipotesis di convessitat fuarte (4.23)
e (4.26). Assumin che ug € H3(Q) e sedi la uniche soluzion debile
al probleme (4.14)—(4.17), che e sodisfe la cundizion di normalizazion
(4.30) cui dats al contor che a sodisfin (4.18) e (4.19). O vin

V=572 000y + 70 I Mall ir-sr2(00) + 70 2N M|l ir-12(00) < Clluollmsqy »
(4.77)
dula che C > 0 al dipent di Mo, My, ||P|| 50 (), IP" | Lo (), |Ql oo (62) -

Dimostrazion dal Teoreme 4.6. La dimostrazion si base essenzialmentri
su la cumbinazion de stime A, (4.75) cuntun argoment di cuviertidure
e sul s dal Leme de energjie 4.7.

O cuvierzin Q cun cubis sieradis, che no si soreponin dentri @,
j=1,..,J, cun lat ¢ = %ro, duld che 0 < 1 al & stat introdot inte
Proposizion 4.11. Al sedi p > 1 'esponent introdusit inte Proposizion
4.12. Pe disavualance di Holder’s o vin

=1 1
> 1
D] < (/ i ’Dzuo”fl> (/ \D2U0\2> g (4.78)
Uj:l Qj D

Aplicant la Proposizion 4.12, cun 7 = d—zo aes sferis B; che a circoscrivin
ogni Qj, 7 =1,...,J, o otignin
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p—1 p—1

> J
/ D 7T < [Tey L / |Du| 7
7 Q; o\ 2 =1 1Bj| /B,

j=1%j J

IN

p—1

T J =AW T (JeQ)ple A%ewp
<3¢ <2 T
2 f ’D2u0’ : 2 2\ p
j=1 IB | /B min; (fBj | D%y )
(4.79)

dula che lis costantis p e A a dipendin dome di «q, v9, M2, My, Moy,
7"0’ m , do e dal rapuart F' dat di (4.60). Cun (4.13) o vin
J
Je = 1Q; < 19| < Mirg. (4.80)

=1

Di consecuence, di (4.78)—(4.80) e riclamant la definizion di €, o vin

1
fD |D2U0|2 P

: (4.81)
D2up|?
fB;. | D?u

Q] < Cr

cun j cussi che [5 | D%u|” = min, I5. |D2u|”.
j J
De Proposizion 4.10, de disavualance standard di Poincare e de dis-
avualance di interpolazion (4.76), cun (4.77), (4.32), (4.50) e (4.55), o

vin
2 2 c
/ | D% ZC/’D2U0’ > ol () =
B;- Q o

2
C [ lwollms@
Tg<” Nluollips @) = (4.82)

||U0||H4(Q)
C
Z CF_2 </ ‘DQUQ‘Q +7“(2)’DSUO2> Z TT,)W().
Q 0

Cun (4.81) e (4.82) o vin

1

~ 3 D2unl?\ 7

\mscra(’"ofDV‘V“‘)' | (4.83)
0
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L
) 1o

cu la costante C' > 0 che e dipent dome di ag, v, M2, My, My, %
dp e dal rapuart F dat di (4.60).

Infin, de bande campe di (4.63) e di (4.83), o concludin otignint il
limit superior par || in (4.59). O
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