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Ristret. In cheste rassegne o esamiǹın cualchi risultât resint pai problemis

inviers relat̂ıfs aes nanostruturis elastichis sutilis. Lis nanostruturis a son con-

sideradis unidimensionâls (nanotrâfs) o bidimensionâls (nanoplachis) e a son

descritis intal ambit di une version semplificade de teorie de elasticitât lineâr

cun gradient di deformazion par materiâi isotrops. Un prin grup di risultâts al

rivuarde l’ûs des nanotrâfs tant che sensôrs di risonance di masse par identificâ

une densitât di masse zontade no cognossude par mieç de misurazion di un nu-

mar fin̂ıt di frecuencis di risonance. Intal secont grup di risultâts, o determiǹın

stimis costrutivis dal alt e dal bas de aree di une inclusion elastiche no cognos-

sude pussibilmentri presint intune nanoplache, esprimudis in tiermins di lavôr

esercitât di cjamps di fuarce e di moment aplicâts al contor de nanoplache.

Peraulis clâf. Nanotrâfs e nanoplachis, sensôr di masse, problemis inviers

dai autovalôrs cun dâts fin̂ıts, stimis de grandece di inclusions in nanoplachis.

1. Introduzion. In cheste rassegne o esaminar̀ın cualchi probleme in-
viers relat̂ıf aes nanostruturis.

La sezion 2 e je dedicade ae introduzion di modei mecanics par nano-
trâfs e nanoplachis intal contest de teorie de elasticitât par materiâi cun
gradient di deformazion isotropic in deformazion infinitesimâl. I modei
a son dedusûts in maniere formâl tacant de formulazion tridimensionâl
debile dal probleme e specializant l’insiemi des configurazions amissi-
bilis dal pont di viste cinematic daûr des ipotesis di Eulêr-Bernoulli pes
nanotrâfs e des ipotesis di Kirchhoff-Love pes nanoplachis.

Tal paragraf 3 o front̀ın il probleme inviers ponût dal ûs di une
nanotrâf uniforme tant che sensôr di masse. Il rilevament de masse

�Dipartiment Politecnic di Inzegnarie e Architeture, Universitât dal Friûl, Udin,
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si fonde su la misurazion des variazions de frecuence di risonance cau-
sadis de masse tacade a une nanotrâf su lis primis frecuencis naturâls
des vibrazions assiâls o di flession. Chest al è un probleme inviers dai
autovalôrs cun dâts fin̂ıts, caraterizât di patologjiis matematichis che
a rindin une vore complesse la sô analisi e risoluzion. Il nestri metodi
di ricostruzion si base suntune procedure iterative che e prodûs une
aprossimazion de densitât di masse discognossude come serie troncade
gjeneralizade di Fourier, cun coeficients che a son calcolâts su la fonde
dai autovalôrs misurâts. A poie de teorie si presentin simulazions nu-
merichis e verifichis sperimentâls.

Un probleme diagnostic inte elastostatiche des nanoplachis al è frontât
tal paragraf 4. Ta chest paragraf, o calcol̀ın il probleme di determinâ,
dentri di une nanoplache isotrope elastiche in flession cun cundizions al
contor di Neumann, la presince pussibile di une inclusion costituide di
materiâl elastic diviers. Sot di ipotesi a priori adeguadis su la inclusion
discognossude, o furǹın stimis cuantitativis dal alt e dal bas de aree dal
difiet discognossût, in tiermins di lavôr esercitât dai dâts al contor cuant
che la inclusion e je presinte e cuant che e je assente. In chest contest,
l’acent al sarà metût suntune schirie di struments cuantitat̂ıfs origjinâi
di continuazion uniche pal operadôr elitic di sest ordin che al guvierne
la nanoplache in flession.

Nus pâr oportun zontâ cualchi osservazion su la impostazion che o
vin dât a chest contribût. O vin prefer̂ıt presentâ une tratazion il plui
pussibil complete e autonome, tacant dal model mecanic, includude la
formulazion dal probleme inviers e la sô soluzion e, cuant pussibil, ancje
lis verifichis numerichis e sperimentâls. Tignint cont dai limits di spazi,
cheste sielte e à compuartât cence fal cierts disavantaçs. Par esempli,
cierts risultâts a son dome enunziâts e ciertis dimostrazions a son dome
aboçadis. No vin in ogni câs nissun dubi che il letôr interessât al varà
mût di cjatâ ducj i detais necessaris intai articui origjinâi.

I risultâts presentâts in chest lavôr a nassin intune rêt di colabo-
razions e o desideri ringraciâ ducj i amı̂s e i coleghis che cun lôr o ai
vût il privileç e la oportunitât di colaborâ. O volarès scomençâ ringra-
ciant José Fernández-Sáez (Pepe) e Ramón Zaera (Universidad Carlos
III de Madrid), che mi àn invidât e stiçât a lavorâ su lis nanostruturis,
intun cun Lourdes Rubio e Antonio Loya. O volarès po dopo ringraciâ,
in ordin alfabetic rigorôs, come che ur plâs ai matematics, - Giovanni

Alessandrini (Universitât di Triest), Alexandre Kawano (Universidade
de São Paulo, in Braŝıl), Edi Rosset e Eva Sincich (Universitât di Triest),
Sergio Vessella (Universitât di Florence) pai tancj agns di colaborazion
stimolante. Di lôr o ai imparât e o continui a imparâ tant. Un ringra-
ciament sclet al va ancje ai coleghis plui zovins e entusiascj: Michele
Dilena e Marta Fedele Dell’Oste (Universitât di Udin). In ultin, o vuei
dedicâ chest lavôr al gno cjâr amı̀ Pepe, che nus à lassâts masse adore.
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dai autovalôrs misurâts. A poie de teorie si presentin simulazions nu-
merichis e verifichis sperimentâls.
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Alessandrini (Universitât di Triest), Alexandre Kawano (Universidade
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Il fin di cheste rassegne al è chel di riviodi in curt lis ecuazions co-
stitutivis de elasticitât lineâr cun gradient di deformazion e di introdusi
modei mecanics sempliçs di nanotrâfs e nanoplachis, che intai paragrafs
sucesŝıfs a saran adotâts par analizâ problemis inviers specifics su lis
nanostruturis. In particolâr, si concentrar̀ın sui materiâi isotrops intal
ambit de teorie di Mindlin.

2.2 Materiâi elastics lineârs cun gradient di deformazion. O premet̀ın
cualchi note. Cun {O,X1,X2,X3} o indich̀ın un sisteme di riferiment
Cartesian in R3 cun base canoniche {ei}3i=1, ei · ej = δij e e1 × e2 = e3,
dulà che δij al è il delta di Kronecker’s. Ach̀ı, · al indiche il prodot scalâr
in R3, o sedi a ·b = aibi par ogni a, b ∈ R3, e × al è il prodot vetoriâl in
R3, o sedi a×b = δijkaibjek, dulà che δijk al è il simbul di Ricci. Di chi
indenant, la sume dai indiçs ripetûts e je assumude in maniere implicite.
Lis primis derivadis parziâls ∂f/∂xi de funzion f a son indicadis cun f,i,
e chel istes pes derivadis di ordin superiôr.

E sedi B une configurazion di riferiment naturâl di un solit continui,
dulà che B al è identificât cuntun sotinsiemi viert, limitât e conetût
di R3, che al à un contor regolâr ∂B che al permet la aplicazion de
integrazion par parts di Gauss-Green. O indich̀ın cun v = viei un cjamp
di spostament infinitesimâl imponût su B = B∪∂B, che al indûs il tensôr
di deformazion infinitesimâl ϵϵϵ = ϵϵϵ(v) cun componentis Cartesianis

ϵij =
1

2
(vi,j + vj,i) (2.1)

e il secont gradient di spostament ηηη = ηηη(v) cun componentis Cartesianis

ηijk = vk,ij , (2.2)

i, j, k = 1, 2, 3. Par definizion, o vin

ϵij = ϵji, ηijk = ηjik (2.3)

e, duncje, ϵϵϵ e ηηη a àn, rispetivementri, 6 e 18 componentis indipendentis.
Si à di notâ che ϵϵϵ e ηηη a àn dimensions diferentis. Di consecuence, di
là des costantis tradizionâls de teorie classiche de elasticitât lineâr, si
spietisi che tes ecuazions costitutivis a sedin presintis costantis zontadis
che a includin fatôrs di scjale. Chestis a son lis costantis di scjale di
lungjece interne.

2. Modei di nanostruturis in elasticitât lineâr cun gradient di defor-
mazion

2.1 Introduzion. Intai ultins decenis, lis struturis inzegneristichis a son
stadis ridotis a dimensions cetant piçulis, rivant ae scjale micrometriche
(1 µm= 10−6 m) e fintremai ae scjale nanometriche (1 nm= 10−9 m). La
misure tipiche L des nanoplachis, par esempli, e je ator di 100÷1000µm
(0.1÷ 1 mm), o fintremai mancul, cun spessôr h ≃ L/20÷ L/10.

Lis peliculis sutilis su scjale micrometriche a son dopradis une vore
in inzegnarie pes lôr proprietâts eletrichis, otichis e di durece e resistence
ae corosion. A son presintis intai disposit̂ıfs eletronics, tes lints dai ocjâi
e tes machinis. I sistemis microeletromecanics e nanoeletromecanics a
son creâts par sondâ superficiis, studiâ celulis e neurons, movi microlitris
di fluits, deviâ fotons inte optoeletroniche. Altris aplicazions dai sensôrs
a son il rilevament di gas, la diagnosi precoce di malatiis, il rilevament
di mutazions gjenetichis e il secuenziament dal DNA.

Chestis struturis di piçulis dimensions a àn composizion e forme di
trâfs sut̂ıi o lastris sutilis. A resistin a cjamis statichis e dinamichis e, inte
plui part dai câs, si deformin in maniere elastiche. Lis lôr dimensions
a son tal ordin dai microns e dai nanometris e in chest lavôr a saran
definidis come nanostruturis.

Par previodi la deformazion des nanostruturis e je stade doprade
la elasticitât lineâr convenzionâl, ma, benzà dai agns 90 dal Nûfcent, in
tancj esperiments condots in variis cundizions di deformazion a son stâts
segnalâts fenomens dipendents des dimensions; che si viodi, par esempli,
la rassegne di Fleck a Hutchinson (1997). Inte flession e inte vibrazion
libare des nanotrâfs, par esempli, lis deflessions previodudis des teoriis
classichis a son plui grandis, intant che lis frecuencis naturâls a son plui
bassis di chês misuradis intai esperiments. Stant che lis teoriis conven-
zionâls de elasticitât no àn parametris di scjale di lungjece dal materiâl,
chestis a son inadatis a sclar̂ı i efiets de dimension. Si che duncje, a
son stadis disvilupadis teoriis di ordin superiôr cun ecuazions costitu-
tivis che a contegnin no dome i parametris classics dal materiâl, ma
ancje parametris zontâts di scjale di lungjece dal materiâl. O riclamı̀n,
tra chês altris, lis teoriis gjenerâls pai materiâi cun microstruture elabo-
radis di Toupin (1962, 1964) e di Mindlin e dai siei colaboradôrs (Mindlin
e Tiersten, 1962; Mindlin, 1964, 1965; Mindlin e Eshel, 1968).
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tivis che a contegnin no dome i parametris classics dal materiâl, ma
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par ogni matriç Qij ortogonâl. La invariance sot riflessions (par esempli,
det(Qij) = −1) e impliche che il tensôr di cuint ordin H al spar̀ıs:

Hijpqr = 0. (2.11)

La espression gjenerâl di un tensôr isotrop di cuart ordin, che al sodisfe
lis simetriis maiôrs (2.5) e minôrs (2.6), e je

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.12)

dulà che λ e µ a son i modui di Lamé. Si che duncje, la ecuazion
costitutive (2.8) pal tensôr di solecitazion e je

σij = Cijklϵkl = 2µϵij + λ(ϵkk)δij . (2.13)

Daûr de teorie di Weil (Weyl, 1946; Suiker e Chang, 2000), la espression
gjenerâl di un tensôr isotrop di sest ordin e je

Bijklmn = c1δijδklδmn + c2δijδkmδln + c3δijδknδlm+

+ c4δikδjlδmn + c5δikδjmδln + c6δikδjnδlm+

+ c7δilδjkδmn + c8δilδjmδkn + c9δilδjnδkm+

+ c10δimδjkδln + c11δimδjlδkn + c12δimδjnδkl+

+ c13δinδjkδlm + c14δinδjlδkm + c15δinδjmδkl,

(2.14)

dulà che {ci}15i=1 a son costantis. Lis simetriis maiôr (2.5) e minôr (2.6)
dal tensôr B a ridusin il numar di variabilis indipendentis:

simetrie maiôr (2.5) =⇒ c13 = c1, c6 = c2, c10 = c4, c14 = c12;

prime simetrie minôr (2.6) =⇒ c7 = c4, c10 = c5, c11 = c8,

c13 = c6, c14 = c9, c15 = c12;

seconde simetrie minôr (2.6) =⇒ c2 = c1, c5 = c4, c10 = c7,

c11 = c8, c12 = c9, c15 = c14.
(2.15)

Al è pussibil dimostrâ che dome cinc coeficients a restin indipendents,
stant che ducj chei altris a puedin jessi esprimûts in tiermins di, par
esempli, {c1, c3, c4, c8, c9}. Doprant la simetrie (2.3) di ηijk e dopo
cualchi semplificazion, la ecuazion costitutive (2.8) dal tensôr di dople

Dentri de teorie disvilupade in origjin di Mindlin pai materiâi solits
iperelastics lineârs, si ipotize che la densitât di energjie di deformazion
imagazenade in B e sedi une forme cuadratiche definide positive dai siei
argoments

g = g(ϵij , ηijk) =
1

2
(Cijpqϵpqϵij + 2Hijpqrηpqrϵij +Bijkpqrηpqrηijk) ,

(2.4)
dulà che il tensôr di cuart ordin C, il tensôr di cuint ordin H e il tensôr
di sest ordin B a sodisfin lis cundizions di simetrie maiôr

Cijpq = Cpqij , Hijpqr = Hpqrij , Bijkpqr = Bpqrijk (2.5)

par ogni i, j, k, p, q, r = 1, 2, 3. Cun di plui, lis proprietâts di simetrie
(2.3) su ϵij e ηijk, rispetivementri, a puartin a chestis altris simetriis
minôrs:

Cijpq = Cjipq = Cijqp, Hijpqr = Hjipqr = Hijqpr,

Bijkpqr = Bjikpqr = Bjikqpr.
(2.6)

Il stât di solecitazion dal materiâl corispondent a un stât di deformazion
gjeneric (ϵij , ηijk) al è dât dal tensôr di solecitazion intrinsiche σij e dal
tensôr di dople solecitazion intrinsiche τijk:

σij =
∂g

∂ϵij
(= σji), τijk =

∂g

∂ηijk
(= τjik). (2.7)

De espression (2.4) de energjie di deformazion, lis ecuazions costitutivis
a son

σij = Cijpqϵpq +Hijpqrηpqr, τijk = Hpqijkϵpq +Bijkpqrηpqr. (2.8)

Di chi indenant, o cjap̀ın in considerazion materiâi isotrops, o ben ma-
teriâi che par chei la energjie di deformazion g e à di jessi invariante sot
di cualsisedi trasformazion ortogonâl Qij (QijQkj = δik), includudis lis
riflessions, o ben

g(ϵij , ηijk) = g(QmiQnjϵmn, QmiQnjQpkηmnp). (2.9)

La cundizion (2.9) e impliche che i tensôrs di elasticitât C, H, B a sodisfin

Cijpq = CmnrsQmiQnjQrpQsq,

Hijpqr = HmnstvQmiQnjQspQtqQvr,

Bijkpqr = BlmnstvQliQmjQnkQspQtqQvr

(2.10)
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par ogni matriç Qij ortogonâl. La invariance sot riflessions (par esempli,
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dal tensôr B a ridusin il numar di variabilis indipendentis:
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Dentri de teorie disvilupade in origjin di Mindlin pai materiâi solits
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1

2
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g(ϵij , ηijk) = g(QmiQnjϵmn, QmiQnjQpkηmnp). (2.9)

La cundizion (2.9) e impliche che i tensôrs di elasticitât C, H, B a sodisfin

Cijpq = CmnrsQmiQnjQrpQsq,
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In leterature e je stade derivade une jerarchie di modei isotropics sem-
plificâts di materiâi elastics cun gradient di deformazion, imponint ciertis
simetriis zontadis o semplificant lis cundizions; par une analisi complete
si viodi Polizzotto (2017). Il criteri comunementri plui adotât al con-
sist intal introdusi une scomposizion iridusibile adeguade dal tensôr dal
secont gradient ηijk in components ortogonâi, che, in maniere tipiche, si
fondin su la ripartizion in components cun olme/cence olme (vâl a d̂ı in
components idrostatiche/deviatoriche) e su la ripartizion simetriche/an-
tisimetriche. In chest lavôr, o aǹın daûr de analisi di Lam et al. (2003)
là che la influence de part antisimetriche dal tensôr di curvadure e ven
ignorade par ridusi lis costantis di scjale internis di cinc a trê.

O vin di premeti un pocjis di definizions relativis ai tensôrs di tierç
ordin T cun componentis Cartesianis Tijk, i, j, k = 1, 2, 3.

La part simetriche TS
ijk di Tijk e je avuâl ae sume dai components

Tijk par dutis lis permutazions pussibilis dai indiçs i, j, k dividude par
3!:

TS
ijk =

1

6
(Tijk + Tikj + Tjik + Tkji + Tkij + Tjki) . (2.18)

La part antisimetriche TA
ijk di Tijk e je

TA
ijk = Tijk − TS

ijk. (2.19)

Ben si intint che il tensôr TS
ijk par sigûr al è invariant sot cualsisedi

permutazion di indiç e che i doi tensôrs TS
ijk, T

A
ijk a son unics.

Un tensôr di tierç ordin Tijk al è dit cence olme o deviatoric se la
sume des sôs componentis corispondentis a une cubie di indiçs e je avuâl
di zero, par ogni sielte de cubie di indiçs (come par solit, i indiçs ripetûts
a vegnin sumâts):

Tijj = 0 par ogni i = 1, 2, 3,

Tiji = 0 par ogni j = 1, 2, 3,

Tiik = 0 par ogni k = 1, 2, 3.

(2.20)

Cualsisedi tensôr Tijk al pues ancje jessi discomponût in mût univoc tant
che

Tijk = T
(0)
ijk + T

(1)
ijk , (2.21)

dulà che T
(0)
ijk e je la la part cun olme e T

(1)
ijk e je la part cence olme di

Tijk.

solecitazion e je

τijk = Bijklmnηlmn = c1(2δijηkmm + δikηmmj + δjkηmmi)+

+ c3δijηmmk + 2c4(δikηjmm + δjkηimm) + 2c8ηijk + 2c9(ηikj + ηjki).
(2.16)

De espression parsore o pod̀ın dedusi che, intal insiemi des 18 variabilis
dal gradient di deformazion ηijk, tal câs di materiâi isotrops il materiâl
al reagj̀ıs in maniere diferente dome a 5 misuris di deformazion costi-
tutivementri indipendentis. A son i doi insiemis di variabilis contratis
ηkmm = (∇(divv))k, ηmmk = ∆vk, de lôr modalitât di cubiament, e an-
cje des variabilis ηijk = (∇2vk)ij , e de lôr modalitât di cubiament. Ach̀ı,
divv = vi,i, ∇ al è l’operadôr gradient e ∆ al è l’operadôr Laplacian.
Cun (2.13) e (2.16), la densitât di energjie di deformazion e presente la
forme no cubiade dade de sume dal tiermin classic gc e dal tiermin di
ordin superiôr gh.o., o sedi

2g(ϵij , ηijk) ≡ 2gc(ϵij) + 2gh.o.(ηijk),

2gc(ϵij) = 2µϵijϵij + λ(ϵkk)
2,

2gh.o.(ηijk) = 4c1ηiikηkmm + c3ηiikηmmk + 4c4ηjkkηjmm+

+ 2c8ηijkηijk + 4c9ηkijηijk,

(2.17)

che e dimostre che il model di elasticitât isotropiche plui gjenerâl al è
caraterizât di siet costantis dal materiâl, ven a stâi, i doi modui di Lamé
e cinc costantis di scjale.

Inte sezion sucessive o introdusar̀ın une teorie semplificade dal gra-
dient di deformazion proponude di Yang et al. (2002), Lam et al. (2003)
là che, in presince di ipotesis adeguadis, lis costantis zontadis di ordin
superiôr a vegnin ridusudis di cinc a trê. Cheste teorie e sarà doprade tes
sezions 2.4 e 2.5 par disvilupâ un model di nanoplache di Kirchhoff-Love
e un model di nanotrâf di Eulêr-Bernoulli.

2.3 Une teorie semplificade dal gradient di deformazion. O vin viodût
te sezion di prime che il model isotropic gjenerâl dal materiâl cun gra-
dient di deformazion inte elasticitât lineâr al à cinc coeficients di ordin
superiôr. Chescj coeficients a àn di jessi determinâts in maniere spe-
rimentâl e, si che duncje, al è di interès pratic disvilupâ teoriis, ancje
semplificadis, cuntun numar minôr di costantis costitutivis.
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fondin su la ripartizion in components cun olme/cence olme (vâl a d̂ı in
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O vin di premeti un pocjis di definizions relativis ai tensôrs di tierç
ordin T cun componentis Cartesianis Tijk, i, j, k = 1, 2, 3.

La part simetriche TS
ijk di Tijk e je avuâl ae sume dai components

Tijk par dutis lis permutazions pussibilis dai indiçs i, j, k dividude par
3!:
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La part antisimetriche TA
ijk di Tijk e je
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Ben si intint che il tensôr TS
ijk par sigûr al è invariant sot cualsisedi
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ijk, T

A
ijk a son unics.

Un tensôr di tierç ordin Tijk al è dit cence olme o deviatoric se la
sume des sôs componentis corispondentis a une cubie di indiçs e je avuâl
di zero, par ogni sielte de cubie di indiçs (come par solit, i indiçs ripetûts
a vegnin sumâts):

Tijj = 0 par ogni i = 1, 2, 3,

Tiji = 0 par ogni j = 1, 2, 3,

Tiik = 0 par ogni k = 1, 2, 3.

(2.20)

Cualsisedi tensôr Tijk al pues ancje jessi discomponût in mût univoc tant
che

Tijk = T
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ijk + T

(1)
ijk , (2.21)

dulà che T
(0)
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solecitazion e je
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+ c3δijηmmk + 2c4(δikηjmm + δjkηimm) + 2c8ηijk + 2c9(ηikj + ηjki).
(2.16)
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forme no cubiade dade de sume dal tiermin classic gc e dal tiermin di
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Tal ultin, o riclamı̀n il prodot scalâr tra doi tensôrs di tierç ordin:

S · T = SijkTijk. (2.22)

Se SijkTijk = 0, alore S e T a son defin̂ıts ortogonâi.
Lis definizions parsore si aplichin al secont tensôr gradient ηijk =

vk,ij . La part simetriche (o tensôr gradient di slungjament, cun 10 com-
ponentis indipendentis) e la part antisimetriche (or tensôr gradient di
rotazion, cun 8 componentis indipendentis) di ηijk a son dadis di

ηSijk =
1

3
(vk,ij + vi,jk + vj,ki) ,

ηAijk =
1

3
(2vk,ij − vi,jk − vj,ki)

(2.23)

e a son ortogonâls:

ηSijkη
A
ijk = 0. (2.24)

O discompoǹın il tensôr gradient di slungjament ηSijk inte sô part cun
olme (3 componentis indipendentis) e inte part cence olme (7 compo-
nentis indipendentis):

ηSijk = η
(0)
ijk + η

(1)
ijk, (2.25)

η
(0)
ijk =

1

5

(
δijη

S
mmk + δjkη

S
mmi + δkiη

S
mmj

)
, (2.26)

ηSmmk =
1

3
(ηmmk + 2ηkmm) . (2.27)

Ancje la part cun olme e chê cence olme di ηSijk a son ortogonâls. Si che
duncje, o vin discomponût il secont tensôr gradient ηijk in trê compo-
nentis ortogonâls tra di lôr:

ηijk = η
(0)
ijk + η

(1)
ijk + ηAijk, η

(0)
ijkη

(1)
ijk = η

(0)
ijkη

A
ijk = η

(1)
ijkη

A
ijk = 0. (2.28)

Il tensôr gradient di rotazion ηAijk al pues jessi esprimût in tiermins di
un tensôr di secont ordin cence olme χij coincident cu la curvadure

χij = ωi,j , cun ωi =
1

2
δijkvk,j , (2.29)

dulà che ωωω = ωiei al è il vetôr assiâl de part antisimetriche dal gradient
di spostament, vâl a d̂ı ωωω×a = (∇v− (∇v)T )a par ogni a ∈ R3. Di fat,
di (2.23) e (2.29) o vin

ηAijk =
2

3
(δiklχlj + δjklχli) . (2.30)

Cun di plui, doprant (2.29) in (2.27) o pod̀ın esprimi i tiermins ηSmmi,

che a definissin η
(0)
ijk come

ηSmmi = ϵ,i +
2

3
δimnχ

A
mn, (2.31)

dulà che ϵ = vm,m e je la deformazion di dilatazion.
Su la base de rapresentazion (2.28), la scomposizion dal tensôr di

dople tension τijk in (2.7) e pues jessi scrite tant che

τijk = τ
(0)
ijk + τ

(1)
ijk + τAijk, (2.32)

dulà che lis componentis τ
(0)
ijk , τ

(1)
ijk , τ

A
ijk a son coniugadis intal sens dal

lavôr disvilupât cun lis componentis dal secont gradient η
(0)
ijk, η

(1)
ijk, η

A
ijk,

rispetivementri, e a son definidis in analogjie cun (2.25) e (2.26):

τSijk = τ
(0)
ijk + τ

(1)
ijk , (2.33)

τ
(0)
ijk =

1

5

(
δijτ

S
mmk + δjkτ

S
mmi + δkiτ

S
mmj

)
, (2.34)

dulà che τSijk e je la part simetriche di τijk e τAijk = τijk − τSijk e je la
part antisimetriche di τijk. Lis trê componentis di τijk in (2.32) a son
ortogonâls tra di lôr e, cun di plui,

τ
(0)
ijk e je ortogonâl rispiet a η

(1)
ijk, ηAijk,

τ
(1)
ijk e je ortogonâl rispiet a η

(0)
ijk, ηAijk,

τAijk e je ortogonâl rispiet a η
(0)
ijk, η

(1)
ijk.

(2.35)

E duncje, la densitât di energjie di deformazion di ordin superiôr gh.o. e
pues jessi scrite tant che

2gh.o. = τ
(0)
ijkη

(0)
ijk + τ

(1)
ijkη

(1)
ijk + τAijkη

A
ijk. (2.36)
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di spostament, vâl a d̂ı ωωω×a = (∇v− (∇v)T )a par ogni a ∈ R3. Di fat,
di (2.23) e (2.29) o vin

ηAijk =
2

3
(δiklχlj + δjklχli) . (2.30)

Cun di plui, doprant (2.29) in (2.27) o pod̀ın esprimi i tiermins ηSmmi,

che a definissin η
(0)
ijk come

ηSmmi = ϵ,i +
2

3
δimnχ

A
mn, (2.31)
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ortogonâls tra di lôr e, cun di plui,

τ
(0)
ijk e je ortogonâl rispiet a η

(1)
ijk, ηAijk,

τ
(1)
ijk e je ortogonâl rispiet a η

(0)
ijk, ηAijk,

τAijk e je ortogonâl rispiet a η
(0)
ijk, η

(1)
ijk.

(2.35)

E duncje, la densitât di energjie di deformazion di ordin superiôr gh.o. e
pues jessi scrite tant che

2gh.o. = τ
(0)
ijkη

(0)
ijk + τ

(1)
ijkη

(1)
ijk + τAijkη

A
ijk. (2.36)
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2.4 Model di nanoplache di Kirchhoff-Love. Ta cheste sezion o for-
mul̀ın il probleme dal ecuilibri static par une nanoplache sutile in elas-
ticitât lineâr cun gradient di deformazion doprant lis ecuazions costitu-
tivis di ordin superiôr (2.41); che si viodi Morassi et al. (2023a).

Tach̀ın de formulazion tridimensionâl. Assumint che lis azions ester-
nis aplicadis ae configurazion di riferiment naturâl di un solit continui B
si ridusin a un cjamp di fuarcis regolârs fiei, fi : B → R, i = 1, 2, 3, la
energjie totâl imagazenade in B par une deformazion infinitesimâl cun
cjamp di spostament regolâr v = viei e je dade di

E(v) =
∫

B
g(ϵij(v), ηijk(v))dv −

∫

B
fividv, (2.45)

dulà che g = g(ϵij , ηijk) e je come in (2.17), cun gh.o.(ηijk) tant che in
(2.38). Par dedusi la formulazion debile dal probleme di ecuilibri static,
o impoǹın la stazionarietât di E intun cjamp di soluzions di spostament
u : B → R3. Se no vegnin imponudis cundizions gjeometrichis su ∂B,
la formulazion debile e assum cheste forme: determinâ u cuss̀ı che∫

B
(σij(u)ϵij(w) + πi(u)ϵ,i(w) + τ

(1)
ijk (u)η

(1)
ijk(w) +mS

ij(u)χ
S
ij(w))dv =

=

∫

B
fiwidv,

(2.46)
par ogni funzion di prove regolâr w.

Intal tratâ nanoplachis sutilis, si interessar̀ın di dominis tridimen-
sionâi dal gjenar B = Ω × (−t/2, t/2), dulà che Ω al è un sotinsiemi
viert, limitât e conetût dal plan R2 = {e1, e2} che al rapresente il plan
centrâl de plache, e t e je la altece uniforme, cun t << diam(Ω). O
cjapar̀ın in considerazion dominis Ω cun ôr regolâr, par esempli ∂Ω di
classe C2,1.

Daûr de teorie di Kirchhoff-Love, l’insiemi dai spostaments amissibii
dal pont di viste cinematic al è dât in tiermins di spostament trasversâl
w : Ω → R tant che

D = {v : Ω× (−t/2, t/2) → R3 | v(x1, x2, x3) = −x3w,αeα + we3}.
(2.47)

Lis misuris di deformazion ϵ,i (v), η
(1)
ijk(v), χ

S
ij(v) associadis a un dât

v ∈ D a puedin jessi valutadis come in (2.42)–(2.44):

ϵ,1 = −x3∆w,1, ϵ,2 = −x3∆w,2, ϵ,3 = −∆w, (2.48)

Cun (2.27) e (2.33) o vin

τ
(0)
ijkη

(0)
ijk =

3

5
τSmmkϵ,k +

2

5
δkmnτ

S
mmkχmn. (2.37)

Doprant (2.37) in (2.36), e doprant (2.30) par esprimi ηAijk in tiermins
di χmn, o otigǹın

2gh.o. = πiϵ,i + τ
(1)
ijkη

(1)
ijk +mijχij , (2.38)

là che

πi =
3

5
τSmmi, mij =

4

3
τAjpqδipq +

2

5
δijkτ

S
mmk. (2.39)

Te ipotesi a priori

mA
ij = 0, i, j = 1, 2, 3, (2.40)

Lam et al. (2003) a àn ipotizât chestis relazions costitutivis di ordin
superiôr

πi = 2µl20 ϵ,i , τ
(1)
ijk = 2µl21 η

(1)
ijk, mS

ij = 2µl22χ
S
ij , (2.41)

dulà che l0, l1, l2 a son trê parametris posit̂ıfs di scjale dal materiâl e µ
al è il modul di tai di Lamé. Pal contribût dal gradient di deformazion
di prin ordin e je stade adotade la ecuazion classiche di Lamé (2.13). Lis
grandecis cinematichis coinvolzudis in (2.41) a son

ϵ = ϵkk, (2.42)

η
(1)
ijk =

1

3
(ϵjk,i + ϵki,j + ϵij,k)−

1

15
(δij(ϵmm,k + 2ϵmk,m)+

+ δjk(ϵmm,i + 2ϵmi,m) + δki(ϵmm,j + 2ϵmj,m)) ,
(2.43)

χS
ij =

1

4
(δipqwq,jp + δjpqwq,ip). (2.44)

Par completece, o ricuard̀ın che Munch et al. (2017) a àn dimostrât che
ipotizâ la simetrie dal tensôr di solecitazion di cubie tant che in (2.40) nol
va cuintri di nissune leç fisiche fondamentâl, o sedi che la solecitazion di
cubie e pues jessi sielzude tant che simetriche par semplificâ lis ecuazions
costitutivis. Di fat, al è pussibil dimostrâ che lis ecuazions costitutivis
di Lam a corispuindin a une classe specifiche di materiâi cun gradient di
deformazion isotropic, che si viodi Polizzotto (2017).

Te prossime sezion o disvilupar̀ın un model di Kirchhoff-Love di
nanoplache basât su la teorie semplificade di Lam.

A .  M o r a s s i

22
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E(v) =
∫

B
g(ϵij(v), ηijk(v))dv −

∫

B
fividv, (2.45)
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o impoǹın la stazionarietât di E intun cjamp di soluzions di spostament
u : B → R3. Se no vegnin imponudis cundizions gjeometrichis su ∂B,
la formulazion debile e assum cheste forme: determinâ u cuss̀ı che∫
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par ogni funzion di prove regolâr w.

Intal tratâ nanoplachis sutilis, si interessar̀ın di dominis tridimen-
sionâi dal gjenar B = Ω × (−t/2, t/2), dulà che Ω al è un sotinsiemi
viert, limitât e conetût dal plan R2 = {e1, e2} che al rapresente il plan
centrâl de plache, e t e je la altece uniforme, cun t << diam(Ω). O
cjapar̀ın in considerazion dominis Ω cun ôr regolâr, par esempli ∂Ω di
classe C2,1.

Daûr de teorie di Kirchhoff-Love, l’insiemi dai spostaments amissibii
dal pont di viste cinematic al è dât in tiermins di spostament trasversâl
w : Ω → R tant che

D = {v : Ω× (−t/2, t/2) → R3 | v(x1, x2, x3) = −x3w,αeα + we3}.
(2.47)
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(1)
ijk(v), χ

S
ij(v) associadis a un dât

v ∈ D a puedin jessi valutadis come in (2.42)–(2.44):
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2

5
δijkτ

S
mmk. (2.39)

Te ipotesi a priori

mA
ij = 0, i, j = 1, 2, 3, (2.40)

Lam et al. (2003) a àn ipotizât chestis relazions costitutivis di ordin
superiôr

πi = 2µl20 ϵ,i , τ
(1)
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(1)
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S
ij , (2.41)

dulà che l0, l1, l2 a son trê parametris posit̂ıfs di scjale dal materiâl e µ
al è il modul di tai di Lamé. Pal contribût dal gradient di deformazion
di prin ordin e je stade adotade la ecuazion classiche di Lamé (2.13). Lis
grandecis cinematichis coinvolzudis in (2.41) a son

ϵ = ϵkk, (2.42)

η
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ijk =
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3
(ϵjk,i + ϵki,j + ϵij,k)−

1

15
(δij(ϵmm,k + 2ϵmk,m)+

+ δjk(ϵmm,i + 2ϵmi,m) + δki(ϵmm,j + 2ϵmj,m)) ,
(2.43)

χS
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1

4
(δipqwq,jp + δjpqwq,ip). (2.44)

Par completece, o ricuard̀ın che Munch et al. (2017) a àn dimostrât che
ipotizâ la simetrie dal tensôr di solecitazion di cubie tant che in (2.40) nol
va cuintri di nissune leç fisiche fondamentâl, o sedi che la solecitazion di
cubie e pues jessi sielzude tant che simetriche par semplificâ lis ecuazions
costitutivis. Di fat, al è pussibil dimostrâ che lis ecuazions costitutivis
di Lam a corispuindin a une classe specifiche di materiâi cun gradient di
deformazion isotropic, che si viodi Polizzotto (2017).

Te prossime sezion o disvilupar̀ın un model di Kirchhoff-Love di
nanoplache basât su la teorie semplificade di Lam.
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li = costante > 0, i = 0, 1, 2. (2.58)

Il modul di Young e il coeficient di Poisson a puedin jessi esprimûts tai
tiermins dai modui di Lamé µ e λ:

E(x) =
µ(x)(2µ(x) + 3λ(x))

µ(x) + λ(x)
, ν(x) =

λ(x)

2(µ(x) + λ(x))
. (2.59)

I moments di ordin superiôr M
h
ijk(u) (i, j, k = 1, 2) a son dâts di

M
h
ijk(u) = Qijklmnu,lmn, (2.60)

cun (i, j, k, l,m, n = 1, 2)

Qijklmn =
1

3
(b0 − 3b1)δijδknδlm +

1

6
(b0 − 3b1)δik(δjlδmn + δjmδln)+

+
1

6
(b0 − 3b1)δjk(δilδmn + δimδln) +Q8δkn(δilδjm + δimδjl)+

+Q9(δjn(δilδkm + δimδkl) + δin(δjlδkm + δjmδkl)),
(2.61)

dulà che
2(Q8 + 2Q9) = 5b1 , (2.62)

b0(x) = 2µ(x)
t3

12
l20 , b1(x) =

2

5
µ(x)

t3

12
l21 in Ω. (2.63)

Par ce che al tocje lis cundizions di eliticitât su lis costantis costitutivis,
sui modui di Lamé o domand̀ın

µ(x) ≥ α0 > 0, 2µ(x) + 3λ(x) ≥ γ0 > 0 in Ω, (2.64)

dulà che α0, γ0 a son costantis positivis. Se o indich̀ın

l = min{l0, l1, l2} > 0, (2.65)

cun (2.57) e (2.63)–(2.65) o vin

ai(x) ≥ tl2αh
0 > 0, i = 0, 1, 2, bj(x) ≥ t3l2βh

0 > 0, j = 0, 1, in Ω,
(2.66)

dulà che αh
0 = 2

15α0 e βh
0 = 1

30α0.
O clamı̀n M2,M3 i spazis di Banach dai tensôrs rispetivementri di

secont e tierç ordin e M̂2, M̂3 i sotspazis corispondents dai tensôrs che

χS
11 = w,12, χS

12 =
1

2
(w,22 − w,11), χS

22 = −w,12, (2.49)

η
(1)
111 =

x3
5
(3w,122 − 2w,111), η

(1)
222 =

x3
5
(3w,112 − 2w,222), etc. (2.50)

La liste complete di ηijk e pues jessi cjatade in (Morassi et al., 2023a).

Sostituint lis espression di ϵ,i(w), η
(1)
ijk(w), χS

ij(w) te formulazion de-
bile (2.46), dopo une integrazion su la altece e un riordin dai tiermins,
la formulazion debile bidimensionâl dal probleme di ecuilibri par une
nanoplache sutile e consist tal cjatâ il spostament trasversâl u : Ω → R
in mût che (α, β, γ = 1, 2)
∫

Ω
(−w,αβMαβ(u) + w,αβγM

h
αβγ(u))dx =

∫

Ω
(−w,αcα + wp)dx,

par ogni funzion regolâr w : Ω → R,
(2.51)

dulà che, cu la notazion
∫
t gdx3 ≡

∫ t/2
−t/2 gdx3,

cα =

∫

t
fαx3dx3, p =

∫

t
f3dx3. (2.52)

Si à di tign̂ı cont che, par semplificâ la notazion, o vin impuestât x =
(x1, x2) e dx = dx1dx2. I moments di prin ordin Mαβ(u) a son dâts di
(α, β, γ, δ = 1, 2)

Mαβ(u) = −(Pαβγδ + P h
αβγδ)u,γδ, (2.53)

cun
Pαβγδ = B((1− ν)δαγδβδ + νδαβδγδ), (2.54)

P h
αβγδ = (2a2 + 5a1)δαγδβδ + (−a1 − a2 + a0)δαβδγδ, (2.55)

dulà che la rigjiditât ae flession B = B(x) de nanoplache e je definide
in tiermins di modul di Young E e il coeficient di Poisson dal materiâl
ν tal mût che al segùıs

B(x) =
t3E(x)

12(1− ν2(x))
(2.56)

e

a0(x) = 2µ(x)tl20 , a1(x) =
2µ(x)tl21

15
, a2(x) = µ(x)tl22 , (2.57)
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E(x) =
µ(x)(2µ(x) + 3λ(x))

µ(x) + λ(x)
, ν(x) =

λ(x)

2(µ(x) + λ(x))
. (2.59)

I moments di ordin superiôr M
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ν tal mût che al segùıs
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prime e la seconde derivade direzionâl di u dilunc de normâl esterne
unitarie n a Ω.

Par materiâi isotrops omogjenis, la ecuazion diferenziâl e devente
(Wang et al., 2011)

− d1∆∆u+ d2∆∆∆u+ cα,α + p = 0, in Ω, (2.73)

cun

d1 = b0 + 2b1 = 2µ
t3

12

(
l20 +

2

5
l21

)
, (2.74)

d2 = B + a0 + 4a1 + a2 = B + µt

(
2l20 +

8

15
l21 + l22

)
. (2.75)

2.5 Model di nanotrâf di Eulêr-Bernoulli. Te part che e segùıs, o adat̀ın
i argoments de sezion precedente par formulâ il probleme dal ecuilibri
static par une nanotrâf. Par semplicitât, o tratar̀ın in maniere separade
la deformazion estensionâl e chê flessionâl.

Tach̀ın dal probleme estensionâl (Akgoz e Civalek, 2014).
Tal tratâ lis nanotrâfs, o lavor̀ın intun domini cilindricB = Ω×(0, L),

dulà che Ω al è un sotinsiemi viert, limitât e conetût dal plan R2 =
{e2, e3} che al rapresente la sezion trasversâl de nanotrâf, e L e je la
sô lungjece, cun L >> diam(Ω). O indich̀ın cun {O,X1,X2,X3} un
sisteme di riferiment Cartesian in R3 cun base canoniche {ei}3i=1, origjin
O = (0, 0, 0) coincident cul baricentri di Ω×{x1 = 0} e X2,X3 as principâi
di inerzie de sezion trasversâl Ω, o sedi

∫
Ω x1x2dΩ = 0. La aree de sezion

trasversâl e sarà indicade cun A.
Daûr de teorie di Eulêr-Bernoulli, l’insiemi dai spostaments amis-

sibii in estension dal pont di viste cinematic al è dât tai tiermins dal
spostament assiâl w : (0, L) → R tant che

D = {v : Ω× (0, L) → R3 | v(x1, x2, x3) = w(x1)e1}. (2.76)

Di (2.42)–(2.44), lis misuris di deformazion ϵ,i (v), η
(1)
ijk(v), χ

S
ij(v), i, j, k =

1, 2, 3, associadis al insiemi D indicât parsore a son

ϵ,1 = w′′, ϵ,2 = ϵ,3 = 0, (2.77)

χS
ij = 0, (2.78)

a àn componentis invariantis rispiet a dutis lis permutazions dai indiçs
(ven a stâi tensôrs dal dut simetrics). Al sedi, duncje, L(X,Y ) il spazi
dai operadôrs lineârs limitâts tra i spazis di Banach X e Y .

Al è facil verificâ che

P ∈ L(M̂2, M̂2), Ph ∈ L(M̂2, M̂2), Q ∈ L(M̂3, M̂3). (2.67)

Cun di plui, par ogni A,B ∈ M̂2 e par ogni C,D ∈ M̂3 o vin

PA ·B = PB ·A, PhA ·B = PhB ·A, in Ω, (2.68)

QC ·D = QD · C, in Ω. (2.69)

La convessitât fuarte de densitât di energjie di deformazion e je garantide
di chest risultât. Al sedi (D2w)ij = w,ij , (D

3w)ijk = w,ijk, i, j, k = 1, 2.

Leme 2.1. Ipotiz̀ın che i tensôrs elastics P, Ph ∈ L∞(Ω,L(M̂2, M̂2))
e Q ∈ L∞(Ω,L(M̂3, M̂3)) a sedin dâts di (2.54)–(2.55) e (2.61)–(2.63)
rispetivementri, cun modui di Lamè λ, µ che a sodisfin (2.64).

Par ogni w ∈ H3(Ω), o vin

(P+ Ph)D2w ·D2w ≥ t(t2 + l2)ξP|D2w|2 c.d. in Ω, (2.70)

QD3w ·D3w ≥ t3l2ξQ|D3w|2 c.d. in Ω, (2.71)

dulà che ξP > 0, ξQ > 0 a son costantis che a dipendin dome di α0 e γ0,
e l al è stât defin̂ıt in (2.65).

Par otign̂ı la formulazion fuarte dal probleme di ecuilibri (2.51), o
elabor̀ın l’integrâl a man çampe di (2.51) integrant par parts e trasferint

lis derivadis de funzion di prove w aes funzions Mαβ(u), M
h
αβγ(u) de

soluzion u. Par fissâ lis ideis, o calcol̀ın lis cundizions di Dirichlet. Il
probleme di Neumann al sarà analizât inte sezion 4.3. Tignint cont de
regolaritât dal contor (o ben, ∂Ω di classe C2,1), da la arbitrarietât di w
o otigǹın (α, β, γ, δ = 1, 2)

{
(Mαβ +M

h
αβγ,γ),αβ + cα,α + p = 0, in Ω,

u = u,n = u,nn = 0, in ∂Ω,
(2.72)

dulà che Mαβ = Mαβ(u) e M
h
αβγ = M

h
αβγ(u) a son dâts, in maniere

rispetive, di (2.53)–(2.55) e (2.60)–(2.63). Ach̀ı, u,n, u,nn a indichin la
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prime e la seconde derivade direzionâl di u dilunc de normâl esterne
unitarie n a Ω.

Par materiâi isotrops omogjenis, la ecuazion diferenziâl e devente
(Wang et al., 2011)

− d1∆∆u+ d2∆∆∆u+ cα,α + p = 0, in Ω, (2.73)

cun

d1 = b0 + 2b1 = 2µ
t3

12

(
l20 +

2

5
l21

)
, (2.74)

d2 = B + a0 + 4a1 + a2 = B + µt

(
2l20 +

8

15
l21 + l22

)
. (2.75)

2.5 Model di nanotrâf di Eulêr-Bernoulli. Te part che e segùıs, o adat̀ın
i argoments de sezion precedente par formulâ il probleme dal ecuilibri
static par une nanotrâf. Par semplicitât, o tratar̀ın in maniere separade
la deformazion estensionâl e chê flessionâl.

Tach̀ın dal probleme estensionâl (Akgoz e Civalek, 2014).
Tal tratâ lis nanotrâfs, o lavor̀ın intun domini cilindricB = Ω×(0, L),

dulà che Ω al è un sotinsiemi viert, limitât e conetût dal plan R2 =
{e2, e3} che al rapresente la sezion trasversâl de nanotrâf, e L e je la
sô lungjece, cun L >> diam(Ω). O indich̀ın cun {O,X1,X2,X3} un
sisteme di riferiment Cartesian in R3 cun base canoniche {ei}3i=1, origjin
O = (0, 0, 0) coincident cul baricentri di Ω×{x1 = 0} e X2,X3 as principâi
di inerzie de sezion trasversâl Ω, o sedi

∫
Ω x1x2dΩ = 0. La aree de sezion

trasversâl e sarà indicade cun A.
Daûr de teorie di Eulêr-Bernoulli, l’insiemi dai spostaments amis-

sibii in estension dal pont di viste cinematic al è dât tai tiermins dal
spostament assiâl w : (0, L) → R tant che

D = {v : Ω× (0, L) → R3 | v(x1, x2, x3) = w(x1)e1}. (2.76)

Di (2.42)–(2.44), lis misuris di deformazion ϵ,i (v), η
(1)
ijk(v), χ

S
ij(v), i, j, k =

1, 2, 3, associadis al insiemi D indicât parsore a son

ϵ,1 = w′′, ϵ,2 = ϵ,3 = 0, (2.77)

χS
ij = 0, (2.78)

a àn componentis invariantis rispiet a dutis lis permutazions dai indiçs
(ven a stâi tensôrs dal dut simetrics). Al sedi, duncje, L(X,Y ) il spazi
dai operadôrs lineârs limitâts tra i spazis di Banach X e Y .

Al è facil verificâ che

P ∈ L(M̂2, M̂2), Ph ∈ L(M̂2, M̂2), Q ∈ L(M̂3, M̂3). (2.67)

Cun di plui, par ogni A,B ∈ M̂2 e par ogni C,D ∈ M̂3 o vin

PA ·B = PB ·A, PhA ·B = PhB ·A, in Ω, (2.68)

QC ·D = QD · C, in Ω. (2.69)

La convessitât fuarte de densitât di energjie di deformazion e je garantide
di chest risultât. Al sedi (D2w)ij = w,ij , (D

3w)ijk = w,ijk, i, j, k = 1, 2.

Leme 2.1. Ipotiz̀ın che i tensôrs elastics P, Ph ∈ L∞(Ω,L(M̂2, M̂2))
e Q ∈ L∞(Ω,L(M̂3, M̂3)) a sedin dâts di (2.54)–(2.55) e (2.61)–(2.63)
rispetivementri, cun modui di Lamè λ, µ che a sodisfin (2.64).

Par ogni w ∈ H3(Ω), o vin

(P+ Ph)D2w ·D2w ≥ t(t2 + l2)ξP|D2w|2 c.d. in Ω, (2.70)

QD3w ·D3w ≥ t3l2ξQ|D3w|2 c.d. in Ω, (2.71)

dulà che ξP > 0, ξQ > 0 a son costantis che a dipendin dome di α0 e γ0,
e l al è stât defin̂ıt in (2.65).

Par otign̂ı la formulazion fuarte dal probleme di ecuilibri (2.51), o
elabor̀ın l’integrâl a man çampe di (2.51) integrant par parts e trasferint

lis derivadis de funzion di prove w aes funzions Mαβ(u), M
h
αβγ(u) de

soluzion u. Par fissâ lis ideis, o calcol̀ın lis cundizions di Dirichlet. Il
probleme di Neumann al sarà analizât inte sezion 4.3. Tignint cont de
regolaritât dal contor (o ben, ∂Ω di classe C2,1), da la arbitrarietât di w
o otigǹın (α, β, γ, δ = 1, 2)

{
(Mαβ +M

h
αβγ,γ),αβ + cα,α + p = 0, in Ω,

u = u,n = u,nn = 0, in ∂Ω,
(2.72)

dulà che Mαβ = Mαβ(u) e M
h
αβγ = M

h
αβγ(u) a son dâts, in maniere

rispetive, di (2.53)–(2.55) e (2.60)–(2.63). Ach̀ı, u,n, u,nn a indichin la
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pont di viste cinematic tal ambit de teorie di Eulêr-Bernoulli al è dât in
tiermins dal spostament trasversâl (regolâr) w : (0, L) → R tant che

D = {v : Ω× (0, L) → R3 | v(x1, x2, x3) = −x3w
′(x1)e1 + w(x1)e3}.

(2.84)

Lis misuris di ϵ,i (v), η
(1)
ijk(v), χ

S
ij(v), i, j, k = 1, 2, 3, associadis al insiemi

D a son
ϵ,1 = −x3w

′′′, ϵ,2 = 0, ϵ,3 = −w′′, (2.85)

χS
12 = χS

21 = −1

2
w′′, χS

ij = 0 pes vôs restantis, (2.86)

η
(1)
ijk =




− 2

5
x3w

′′′ se (i, j, k) = (1, 1, 1),

1

5
w′′ se (i, j, k) = (3, 3, 3),

− 4

5
w′′ se (i, j, k) a son permutazions di (1, 1, 3),

1

5
x3w

′′′ se (i, j, k) a son permutazions di (1, 2, 2), (1, 3, 3),

1

15
w′′ se (i, j, k) a son permutazions di (2, 2, 3),

0 altrimentri.

(2.87)
Lis espressions ripuartadis parsore a son inseridis te formulazion debile
(2.46) e, daspò di une integrazion su la sezion trasversâl Ω, la formulazion
debile unidimensionâl par une nanotrâf sutile in flession e consist tal
cjatâ un u = −x3u

′(x)e1 + u(x)e3 ∈ D regolâr, cuss̀ı che (x = x1)

 L

0
(−w′′M(u)− w′′′Mh(u))dx =

 L

0
(−w′c+ wp)dx

par ogni funzion regolâr w : (0, L) → R,
(2.88)

dulà che c =

Ω x3f1dΩ, p =


Ω f3dΩ.

Lis ecuazions costitutivis dal moment di flession di prin ordin M(u)
e moment di flession di secont ordin Mh(u) a son dadis di

M(u) = −Su′′, S = E∗I2 + 2µAl20 +
8

15
µAl21 + µAl22 ,

Mh(u) = −Ku′′′, K = 2µI2l
2
0 +

4

5
µI2l

2
1 , I2 =



Ω
x23dΩ.

(2.89)

η
(1)
ijk =




2

5
w′′ se (i, j, k) = (1, 1, 1),

− 1

5
w′′ se (i, j, k) a son permutazions di (1, 2, 2), (1, 3, 3),

0 altrimentri.
(2.79)

Inserint chestis espressions te formulazion debile (2.46), dopo di une in-
tegrazion su la sezion trasversâl Ω e di un riordin dai tiermins, la formu-
lazion debile unidimensionâl dal probleme di ecuilibri par une nanotrâf
sutile in estension e consist tal cjatâ une funzion regolâr u = v(x)e1 ∈ D
cuss̀ı che  L

0
(w′N(v) + w′′Nh(v))dx =

 L

0
qwdx,

par ogni funzion regolâr w : (0, L) → R,
(2.80)

dulà che q =

Ω f1dΩ. Si à di notâ che, par semplificâ la notazion, o vin

impuestât x = x1.
La fuarce assiâl di prin ordin N(v) e la fuarce assiâl di secont ordin

Nh(v) a son dadis di

N(v) = E∗Av′, E∗ = 2µ+ λ, (modul di Young nominâl)

Nh(v) =


2l20 +

4

5
l21


µAv′′.

(2.81)

La formulazion fuarte dal probleme di ecuilibri e pues jessi otignude
integrant par parts in (2.80) e doprant la arbitrarietât de funzion di
prove w. La scriv̀ın tai tiermins des fuarcis assiâls N(v) e Nh(v) e pes
cundizions al contor di Dirichlet: si trate di cjatâ une soluzion regolâr
v : (0, L) → R a




N ′(v)− (Nh(v))′′ + q = 0, in (0, L),

v(0) = v′(0) = 0,

v(L) = v′(L) = 0.

(2.82)

Par materiâi isotrops omogjenis, la ecuazion diferenziâl e devente

E∗Av′′ −

2l20 +

4

5
l21


µAv′′′′ + q = 0, in (0, L). (2.83)

O conclud̀ın la sezion cu la analisi dal probleme di flession intal plan
X3 − X1 (Kong et al., 2009). L’insiemi dai spostaments amissibii dal
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pont di viste cinematic tal ambit de teorie di Eulêr-Bernoulli al è dât in
tiermins dal spostament trasversâl (regolâr) w : (0, L) → R tant che

D = {v : Ω× (0, L) → R3 | v(x1, x2, x3) = −x3w
′(x1)e1 + w(x1)e3}.

(2.84)

Lis misuris di ϵ,i (v), η
(1)
ijk(v), χ

S
ij(v), i, j, k = 1, 2, 3, associadis al insiemi

D a son
ϵ,1 = −x3w

′′′, ϵ,2 = 0, ϵ,3 = −w′′, (2.85)

χS
12 = χS

21 = −1

2
w′′, χS

ij = 0 pes vôs restantis, (2.86)

η
(1)
ijk =




− 2

5
x3w

′′′ se (i, j, k) = (1, 1, 1),

1

5
w′′ se (i, j, k) = (3, 3, 3),

− 4

5
w′′ se (i, j, k) a son permutazions di (1, 1, 3),

1

5
x3w

′′′ se (i, j, k) a son permutazions di (1, 2, 2), (1, 3, 3),

1

15
w′′ se (i, j, k) a son permutazions di (2, 2, 3),

0 altrimentri.

(2.87)
Lis espressions ripuartadis parsore a son inseridis te formulazion debile
(2.46) e, daspò di une integrazion su la sezion trasversâl Ω, la formulazion
debile unidimensionâl par une nanotrâf sutile in flession e consist tal
cjatâ un u = −x3u

′(x)e1 + u(x)e3 ∈ D regolâr, cuss̀ı che (x = x1)

 L

0
(−w′′M(u)− w′′′Mh(u))dx =

 L

0
(−w′c+ wp)dx

par ogni funzion regolâr w : (0, L) → R,
(2.88)

dulà che c =

Ω x3f1dΩ, p =


Ω f3dΩ.

Lis ecuazions costitutivis dal moment di flession di prin ordin M(u)
e moment di flession di secont ordin Mh(u) a son dadis di

M(u) = −Su′′, S = E∗I2 + 2µAl20 +
8

15
µAl21 + µAl22 ,

Mh(u) = −Ku′′′, K = 2µI2l
2
0 +

4

5
µI2l

2
1 , I2 =



Ω
x23dΩ.

(2.89)

η
(1)
ijk =




2

5
w′′ se (i, j, k) = (1, 1, 1),

− 1

5
w′′ se (i, j, k) a son permutazions di (1, 2, 2), (1, 3, 3),

0 altrimentri.
(2.79)

Inserint chestis espressions te formulazion debile (2.46), dopo di une in-
tegrazion su la sezion trasversâl Ω e di un riordin dai tiermins, la formu-
lazion debile unidimensionâl dal probleme di ecuilibri par une nanotrâf
sutile in estension e consist tal cjatâ une funzion regolâr u = v(x)e1 ∈ D
cuss̀ı che  L

0
(w′N(v) + w′′Nh(v))dx =

 L

0
qwdx,

par ogni funzion regolâr w : (0, L) → R,
(2.80)

dulà che q =

Ω f1dΩ. Si à di notâ che, par semplificâ la notazion, o vin

impuestât x = x1.
La fuarce assiâl di prin ordin N(v) e la fuarce assiâl di secont ordin

Nh(v) a son dadis di

N(v) = E∗Av′, E∗ = 2µ+ λ, (modul di Young nominâl)

Nh(v) =


2l20 +

4

5
l21


µAv′′.

(2.81)

La formulazion fuarte dal probleme di ecuilibri e pues jessi otignude
integrant par parts in (2.80) e doprant la arbitrarietât de funzion di
prove w. La scriv̀ın tai tiermins des fuarcis assiâls N(v) e Nh(v) e pes
cundizions al contor di Dirichlet: si trate di cjatâ une soluzion regolâr
v : (0, L) → R a




N ′(v)− (Nh(v))′′ + q = 0, in (0, L),

v(0) = v′(0) = 0,

v(L) = v′(L) = 0.

(2.82)

Par materiâi isotrops omogjenis, la ecuazion diferenziâl e devente

E∗Av′′ −

2l20 +

4

5
l21


µAv′′′′ + q = 0, in (0, L). (2.83)

O conclud̀ın la sezion cu la analisi dal probleme di flession intal plan
X3 − X1 (Kong et al., 2009). L’insiemi dai spostaments amissibii dal
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3. Identificazion di masse basade su risonadôrs in nanotrâfs

3.1 Introduzion. In d̀ı di vuê, la comunitât sientifiche e je atrate dal
ûs des nanostruturis (nanotubui di carboni, sfueis di grafene, nanof̂ıi)
tant che nanosensôrs. Il mot̂ıf al è leât aes carateristichis prometentis
des nanostruturis rispiet a une lungje schirie di aplicazions te sience
e te tecnologjie. I nanosensôrs a puedin jessi classificâts in ŝıs grups
principâi: mecanics, eletrics, otics, magnetics, chimics e termics. In
cheste part nus interessin i sensôrs mecanics e i metodis basâts su lis
vibrazions pe identificazion di masse par mieç des nanotrâfs (Eom et al.,
2011; Wang e Arash, 2014; Arash et al., 2015).

Il principi fisic si base sul fat che la adesion dal analite su la super-
ficie e modifiche la masse dal sisteme di riferiment. Duncje, monitorant
lis variazions des frecuencis di risonance al è pussibil determinâ la di-
stribuzion de masse zontade no cognossude. La ipotesi di base e je che
la perturbazion causade dal tacâsi di atoms/moleculis estraniis o dal as-
sorbiment chimic/molecolâr al puedi jessi descrite dome de perturbazion
de densitât di masse dal nanorisonadôr. A esistin modei mecanics plui
sofisticâts là che te analisi e ven considerade ancje la modificazion simul-
tanie des proprietâts di rigjiditât imbinade al aument di masse (Tamayo
et al., 2006). Ach̀ı, o trascurar̀ın chescj contribûts e o considerar̀ın dome
lis variazions di masse.

La sensibilitât al rilevament di masse e je aumentade in mût signi-
ficat̂ıf tai ultins agns. La capacitât di rilevament e je stade ampliade
dal picogram (10−12 g) che si jere rivâts a rilevâ tal 2001 al yoctogram
(10−24 g, dal stes ordin di grandece de masse dal proton) che si è rivâts
a rilevâ tal 2012; su chest, che si viodi Li et al. (2015), Tamayo (2015),
Munawar et al. (2019).

Il probleme di identificazion par une singule masse concentrade, mo-
delade come masse puntiforme, tacade su la superficie dal nanorisonadôr
al è stât frontât in diviers contribûts, tra altris, par esempli in (Tamayo
et al., 2006). In Morassi et al. (2017) al è stât disvilupât un metodi
perturbat̂ıf basât su la misurazion de variazion des primis dôs frecuencis
di risonance di une nanotrâf che e vibre in direzion assiâl in cundizions
al contor a sbalç. Une estension aes vibrazions di flession e je stade
proponude di Dilena et al. (2019). Bouchaala et al. (2016) al à, invezit,
presentât un metodi par identificâ une masse concentrade tacade a une

La formulazion fuarte dal probleme di ecuilibri e pues jessi derivade cu
la integrazion par parts in (2.88) e doprant la arbitrarietât de funzion
di prove w. Pes cundizions al contor di Dirichlet, o vin




M ′′(u)− (Mh(u))′′′ + c′ + p = 0, in (0, L),

u(0) = u′(0) = u′′(0) = 0,

u(L) = u′(L) = u′′(L) = 0.

(2.90)
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3. Identificazion di masse basade su risonadôrs in nanotrâfs

3.1 Introduzion. In d̀ı di vuê, la comunitât sientifiche e je atrate dal
ûs des nanostruturis (nanotubui di carboni, sfueis di grafene, nanof̂ıi)
tant che nanosensôrs. Il mot̂ıf al è leât aes carateristichis prometentis
des nanostruturis rispiet a une lungje schirie di aplicazions te sience
e te tecnologjie. I nanosensôrs a puedin jessi classificâts in ŝıs grups
principâi: mecanics, eletrics, otics, magnetics, chimics e termics. In
cheste part nus interessin i sensôrs mecanics e i metodis basâts su lis
vibrazions pe identificazion di masse par mieç des nanotrâfs (Eom et al.,
2011; Wang e Arash, 2014; Arash et al., 2015).

Il principi fisic si base sul fat che la adesion dal analite su la super-
ficie e modifiche la masse dal sisteme di riferiment. Duncje, monitorant
lis variazions des frecuencis di risonance al è pussibil determinâ la di-
stribuzion de masse zontade no cognossude. La ipotesi di base e je che
la perturbazion causade dal tacâsi di atoms/moleculis estraniis o dal as-
sorbiment chimic/molecolâr al puedi jessi descrite dome de perturbazion
de densitât di masse dal nanorisonadôr. A esistin modei mecanics plui
sofisticâts là che te analisi e ven considerade ancje la modificazion simul-
tanie des proprietâts di rigjiditât imbinade al aument di masse (Tamayo
et al., 2006). Ach̀ı, o trascurar̀ın chescj contribûts e o considerar̀ın dome
lis variazions di masse.

La sensibilitât al rilevament di masse e je aumentade in mût signi-
ficat̂ıf tai ultins agns. La capacitât di rilevament e je stade ampliade
dal picogram (10−12 g) che si jere rivâts a rilevâ tal 2001 al yoctogram
(10−24 g, dal stes ordin di grandece de masse dal proton) che si è rivâts
a rilevâ tal 2012; su chest, che si viodi Li et al. (2015), Tamayo (2015),
Munawar et al. (2019).

Il probleme di identificazion par une singule masse concentrade, mo-
delade come masse puntiforme, tacade su la superficie dal nanorisonadôr
al è stât frontât in diviers contribûts, tra altris, par esempli in (Tamayo
et al., 2006). In Morassi et al. (2017) al è stât disvilupât un metodi
perturbat̂ıf basât su la misurazion de variazion des primis dôs frecuencis
di risonance di une nanotrâf che e vibre in direzion assiâl in cundizions
al contor a sbalç. Une estension aes vibrazions di flession e je stade
proponude di Dilena et al. (2019). Bouchaala et al. (2016) al à, invezit,
presentât un metodi par identificâ une masse concentrade tacade a une

La formulazion fuarte dal probleme di ecuilibri e pues jessi derivade cu
la integrazion par parts in (2.88) e doprant la arbitrarietât de funzion
di prove w. Pes cundizions al contor di Dirichlet, o vin




M ′′(u)− (Mh(u))′′′ + c′ + p = 0, in (0, L),

u(0) = u′(0) = u′′(0) = 0,

u(L) = u′(L) = u′′(L) = 0.

(2.90)
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sitât di masse lineâr no cognossude (che si viodi la ecuazion (3.21)1
chi sot), i risultâts univocs par ρ(x) a son pôcs e a domandin la co-
gnossince di un insiemi infin̂ıt ancjemò plui grant di autovalôrs. Par
esempli, un risultât classic di Barcilon (1974) al mostre che la determi-
nazion univoche dai coeficients p(x), q(x) dal operadôr di Eulêr-Bernoulli
Lv = vIV − (p(x)v′)′ + q(x)v al domande la cognossince di trê spetris
complets associâts a trê diviersis cundizions al contor; che si viodi Glad-
well (2004) par une analisi complete dal probleme. Si rimande ancje a
Schueller (2001) pai risultâts di unicitât locâl relat̂ıfs a un operadôr di
Eulêr-Bernoulli par un probleme inviers ai autovalôrs di tip misc cun
doi coeficients pâr, e a Caudill et al. (1998) pal prin studi sistematic dai
insiemis di coeficients isospetrâi pai operadôrs di Eulêr-Bernoulli.

Tal studi dal probleme inviers ai autovalôrs di cuart ordin cun dâts
fin̂ıts a nassin altris dificoltât, che a àn la lôr origjin prin di dut de no
unicitât de soluzion e de dificoltât di otign̂ı stimis di erôr su la aprossi-
mazion uniforme dal coeficient discognossût. Al è pussibil dimostrâ che
chestis stimis a domandin la cognossince di infin̂ıts autovalôrs o, alman-
cul, di une formule asintotiche precise e dâts spetrâi suficients par otign̂ı
une buine aprossimazion dai dâts infin̂ıts (Hald, 1978a). Intai câs reâi,
nissun di chescj elements al è disponibil. In ogni câs, cundut de lôr
impuartance e difusion intes aplicazions pratichis, i studis gjenerâi in-
centrâts sui problemis inviers ai autovalôrs cun dâts fin̂ıts a son avonde
pôcs. In cheste direzion, il contribût di Barnes (1991) al è iluminant.
Barnes al dimostre che par cheste classe di problemis inviers al è fonda-
mentâl determinâ la topologjie plui debile là che l’insiemi disponibil di
autovalôrs al è continui (rispiet al coeficient discognossût), stant che se
di no si cirarès di estrai dai dâts spetrâi plui informazions di chês che
chei a contegnin. Barnes (1991) al furǹıs cualchi aprossimazion rafinade
de topologjie plui debile. Inte sezion sucessive 3.2, o riassumı̀n lis ideis
principâls e i risultâts de impostazion di Barnes.

Ae lûs des cuistions ripuartadis chi parsore e ampliant une idee
disvilupade in (Morassi, 2007) pe identificazion dai dams struturâi intes
astis classichis in scjale reâl, il nestri mût di frontâ il probleme inviers ai
autovalôrs cun dâts fin̂ıts si môf di un pont di viste diferent. Assumint
che la variazion di masse e sedi une perturbazion piçule de distribuzion
di masse di riferiment de nanotrâf in vibrazion assiâl, il probleme inviers
al ven linearizât ator de configurazion di riferiment. Daspò, lis vari-

nanotrâf fissade a lis dôs estremitâts par mieç di une azion eletrostatiche.
I lavôrs citâts parsore a cjapin in considerazion massis concentradis

tacadis al sensôr. Dut câs, la masse distribuide zontade che e rapresente
l’analite assorb̂ıt e somee che e sedi plui realistiche te pratiche. A chest
fin, o riclamı̀n i lavôrs di Hanay et al. (2015) e Bouchaala (2018). In
Hanay et al. (2015) e je stade proponude une metodologjie inerziâl di
diagnostiche che e permet la identificazion simultanie dal supuart e de
intensitât des massis distribuidis midiant di misurazions in timp reâl dai
cambiaments des primis frecuencis di risonance di une nanotrâf fissade a
une sole estremitât sot vibrazion trasversâl. Altris contribûts si puedin
cjatâ in (Sader et al., 2018; Kelleci et al., 2018).

Intune schirie di articui resints, o vin disvilupât un metodi di ri-
costruzion par identificâ lis variazions di masse distribuidis a part̂ı di un
numar fin̂ıt di frecuencis di risonance di un risonadôr a nanotrâf, sedi
sot vibrazion assiâl (Dilena et al., 2019b,a) sedi sot vibrazion flessionâl
(Dilena et al., 2020). Ach̀ı il metodi al sarà descrit par une nanotrâf in
vibrazion assiâl cu lis dôs estremitâts fissadis, assumint che il coeficient
di masse al sedi a priori cognossût par metât de nanotrâf e che la masse
zontade e sedi une piçule perturbazion de masse iniziâl totâl.

Dal pont di viste matematic, cheste probleme al jentre te classe dai
problemis inviers fin̂ıts miscs par operadôrs diferenziâi di cuart ordin
dal gjenar di Eulêr-Bernoulli, stant che un numar fin̂ıt di autovalôrs che
a fasin part di un unic spetri al è cognossût e une cognossince parziâl dal
coeficient discognossût e je disponibile. Un risultât celebri di unicitât
par cheste classe di problemis inviers si pues cjatâlu za in Hochstadt and
Lieberman (1978). Chest risultât classic al vâl pai operadôrs diferenziâi
di secont ordin di Sturm-Liouville che a guviernin la vibrazion assiâl
des astis elastichis classichis, o sedi, Lv = − 1

ρ(x)v
′′(x), par une aste

cun rigjiditât assiâl unitarie e densitât di masse lineâr ρ(x). Cul̀ı, v(x)
al esprim il spostament longjitudinâl in x de sezion trasversâl de aste,
x ∈ [0, L], dulà che L e je la lungjece de aste. Hochstadt e Lieberman
a àn dimostrât che se ρ(x) al è prescrit su

[
L
2 , L

]
, alore ducj i infin̂ıts

autovalôrs cun cundizions al contor di estremitâts fissadis v(0) = 0 =
v(L) a bastin par determinâ in mût univoc ρ(x) on

[
0, L2

]
.

Intal câs di operadôrs di cuart ordin, come chel che al guvierne
la vibrazion assiâl di une nanotrâf, par esempli, Lv = 1

ρ(bv
IV − av′′),

cun a, b coeficients di rigjiditât costants posit̂ıfs e ρ(x) funzion di den-
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sitât di masse lineâr no cognossude (che si viodi la ecuazion (3.21)1
chi sot), i risultâts univocs par ρ(x) a son pôcs e a domandin la co-
gnossince di un insiemi infin̂ıt ancjemò plui grant di autovalôrs. Par
esempli, un risultât classic di Barcilon (1974) al mostre che la determi-
nazion univoche dai coeficients p(x), q(x) dal operadôr di Eulêr-Bernoulli
Lv = vIV − (p(x)v′)′ + q(x)v al domande la cognossince di trê spetris
complets associâts a trê diviersis cundizions al contor; che si viodi Glad-
well (2004) par une analisi complete dal probleme. Si rimande ancje a
Schueller (2001) pai risultâts di unicitât locâl relat̂ıfs a un operadôr di
Eulêr-Bernoulli par un probleme inviers ai autovalôrs di tip misc cun
doi coeficients pâr, e a Caudill et al. (1998) pal prin studi sistematic dai
insiemis di coeficients isospetrâi pai operadôrs di Eulêr-Bernoulli.

Tal studi dal probleme inviers ai autovalôrs di cuart ordin cun dâts
fin̂ıts a nassin altris dificoltât, che a àn la lôr origjin prin di dut de no
unicitât de soluzion e de dificoltât di otign̂ı stimis di erôr su la aprossi-
mazion uniforme dal coeficient discognossût. Al è pussibil dimostrâ che
chestis stimis a domandin la cognossince di infin̂ıts autovalôrs o, alman-
cul, di une formule asintotiche precise e dâts spetrâi suficients par otign̂ı
une buine aprossimazion dai dâts infin̂ıts (Hald, 1978a). Intai câs reâi,
nissun di chescj elements al è disponibil. In ogni câs, cundut de lôr
impuartance e difusion intes aplicazions pratichis, i studis gjenerâi in-
centrâts sui problemis inviers ai autovalôrs cun dâts fin̂ıts a son avonde
pôcs. In cheste direzion, il contribût di Barnes (1991) al è iluminant.
Barnes al dimostre che par cheste classe di problemis inviers al è fonda-
mentâl determinâ la topologjie plui debile là che l’insiemi disponibil di
autovalôrs al è continui (rispiet al coeficient discognossût), stant che se
di no si cirarès di estrai dai dâts spetrâi plui informazions di chês che
chei a contegnin. Barnes (1991) al furǹıs cualchi aprossimazion rafinade
de topologjie plui debile. Inte sezion sucessive 3.2, o riassumı̀n lis ideis
principâls e i risultâts de impostazion di Barnes.

Ae lûs des cuistions ripuartadis chi parsore e ampliant une idee
disvilupade in (Morassi, 2007) pe identificazion dai dams struturâi intes
astis classichis in scjale reâl, il nestri mût di frontâ il probleme inviers ai
autovalôrs cun dâts fin̂ıts si môf di un pont di viste diferent. Assumint
che la variazion di masse e sedi une perturbazion piçule de distribuzion
di masse di riferiment de nanotrâf in vibrazion assiâl, il probleme inviers
al ven linearizât ator de configurazion di riferiment. Daspò, lis vari-

nanotrâf fissade a lis dôs estremitâts par mieç di une azion eletrostatiche.
I lavôrs citâts parsore a cjapin in considerazion massis concentradis

tacadis al sensôr. Dut câs, la masse distribuide zontade che e rapresente
l’analite assorb̂ıt e somee che e sedi plui realistiche te pratiche. A chest
fin, o riclamı̀n i lavôrs di Hanay et al. (2015) e Bouchaala (2018). In
Hanay et al. (2015) e je stade proponude une metodologjie inerziâl di
diagnostiche che e permet la identificazion simultanie dal supuart e de
intensitât des massis distribuidis midiant di misurazions in timp reâl dai
cambiaments des primis frecuencis di risonance di une nanotrâf fissade a
une sole estremitât sot vibrazion trasversâl. Altris contribûts si puedin
cjatâ in (Sader et al., 2018; Kelleci et al., 2018).

Intune schirie di articui resints, o vin disvilupât un metodi di ri-
costruzion par identificâ lis variazions di masse distribuidis a part̂ı di un
numar fin̂ıt di frecuencis di risonance di un risonadôr a nanotrâf, sedi
sot vibrazion assiâl (Dilena et al., 2019b,a) sedi sot vibrazion flessionâl
(Dilena et al., 2020). Ach̀ı il metodi al sarà descrit par une nanotrâf in
vibrazion assiâl cu lis dôs estremitâts fissadis, assumint che il coeficient
di masse al sedi a priori cognossût par metât de nanotrâf e che la masse
zontade e sedi une piçule perturbazion de masse iniziâl totâl.

Dal pont di viste matematic, cheste probleme al jentre te classe dai
problemis inviers fin̂ıts miscs par operadôrs diferenziâi di cuart ordin
dal gjenar di Eulêr-Bernoulli, stant che un numar fin̂ıt di autovalôrs che
a fasin part di un unic spetri al è cognossût e une cognossince parziâl dal
coeficient discognossût e je disponibile. Un risultât celebri di unicitât
par cheste classe di problemis inviers si pues cjatâlu za in Hochstadt and
Lieberman (1978). Chest risultât classic al vâl pai operadôrs diferenziâi
di secont ordin di Sturm-Liouville che a guviernin la vibrazion assiâl
des astis elastichis classichis, o sedi, Lv = − 1

ρ(x)v
′′(x), par une aste

cun rigjiditât assiâl unitarie e densitât di masse lineâr ρ(x). Cul̀ı, v(x)
al esprim il spostament longjitudinâl in x de sezion trasversâl de aste,
x ∈ [0, L], dulà che L e je la lungjece de aste. Hochstadt e Lieberman
a àn dimostrât che se ρ(x) al è prescrit su

[
L
2 , L

]
, alore ducj i infin̂ıts

autovalôrs cun cundizions al contor di estremitâts fissadis v(0) = 0 =
v(L) a bastin par determinâ in mût univoc ρ(x) on

[
0, L2

]
.

Intal câs di operadôrs di cuart ordin, come chel che al guvierne
la vibrazion assiâl di une nanotrâf, par esempli, Lv = 1

ρ(bv
IV − av′′),

cun a, b coeficients di rigjiditât costants posit̂ıfs e ρ(x) funzion di den-
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Come che o vin za anticipât inte sezion introdutive 3.1, o pod̀ın
distingui dôs classis principâls di problemis inviers. La prime, che o vin
clamât probleme inviers infin̂ıt, e consist tal determinâ q∗(x) dal spetri
complet infin̂ıt {λn(q

∗)}∞n=1. La leterature in materie e je imense, che
si viodin, par esempli, i libris di Levitan (1987), Pöschel e Trubowitz
(1987), Gladwell (2004) e la rassegne classiche di McLaughlin (1986).
Pe nestre analisi al è util riclamâ il risultât classic di Hald (1978a), che
al à dimostrât che se doi potenziâi q(x) e q∗(x) a son dongje avonde e a
son ducj i doi simetrics in [0, 1] (q(x) = q(1− x) e q∗(x) = q∗(1− x) in
[0, 1]), alore

∥q − q∗∥L∞([0,1]) ≤ 2 · 108+38M+11M2
∞∑
n=1

|λn(q)− λn(q
∗)|, (3.2)

dulà che M > 0 e je une costante. Chi, L∞([0, 1]) al è il spazi des
funzions misurabilis di Lebesgue f : [0, 1] → R cuss̀ı che ∥f∥∞ =
ess supx∈[0,1]|f(x)| < ∞ cuasi dapardut in [0, 1]. La norme L∞ e riclame
il metodi adotât in tancj problemis di inzegnarie par confrontâ visive-
mentri dôs funzions. La stime (3.2) e mostre che par otign̂ı une aprossi-
mazion uniforme dal potenziâl (pâr) no cognossût q∗(x) nus coventin une
cuantitât infinide di dâts spetrâi. Ancje in cheste cundizion une vore fa-
vorevule, la stime di stabilitât (3.2) no je masse utile inte pratiche, stant
che la costante e assum valôrs cetant grancj ancje cuant che M al è piçul,
par esempli, dal ordin di 1.

Ancje cuant che il potenziâl nol è simetric, ma avonde dongje a un
potenziâl cognossût, al è in dut câs pussibil fâ une stime di stabilitât L2

di q − q∗ come che e à dimostrât McLaughlin (1988):

∥q − q∗∥2L2([0,1]) ≤ C
∞∑
n=1

(
(λn(q)− λn(q

∗))2 + n6(rn(q)− rn(q
∗))2

)
,

(3.3)
dulà che rn(q) = ∥yn(x; q)∥2L2([0,1])/y

′
n(0; q) a son costantis di normazion

e C e je une costante positive. O ricuard̀ın che, par ogni p, 1 ≤ p <
+∞, Lp([0, 1]) al è il spazi des funzions misurabilis di Lebesgue f :
[0, 1] → R cuss̀ı che la norme Lp e je limitade, par esempli ∥f∥Lp([0,1]) =(∫ 1

0 |f |p(x)dx
)1/p

< +∞. Ancjemò une volte, la stime (3.3) e mostre che

une cuantitât infinide di dâts spetrâi e conten informazions suficientis
par determinâ une aprossimazion L2 dal potenziâl q∗.

azions di frecuence causadis de variazion di masse a son coreladis cui
coeficients di Fourier gjeneralizâts de variazion di masse discognossude,
valutâts su la fonde di une specifiche famee di funzions; che si viodi, par
chest, la sezion 3.3. E ven proponude une procedure numeriche basade
suntun algoritmi iterat̂ıf di prin ordin e al ven furn̂ıt un risultât di con-
vergjence locâl de ricostruzion; si viodi la sezion 3.4. Par completece, si
à di riclamâ che la idee di colegâ i coeficients di Fourier dal coeficient
discognossût cu lis variazions di frecuence e je vecje e e va indaûr al con-
tribût fondamentâl dât ae teorie dai problemis inviers ai autovalôrs Borg
(1946); par aplicazions numerichis, che si viodin ancje Hald (1978b) e
Knobel e Lowe (1993). A son disponibilis estensions de metodiche ae
variazion di masse gjenerâl e ai dâts su lis vibrazions di flession che a
saran discutudis inte sezion 3.5.

3.2 Problemis inviers ai autovalôrs cun dâts fin̂ıts. Inte plui part dai
problemis inviers ai autovalôrs che si cjatin intes aplicazions inzegne-
ristichis al è pussibil misurâ dome un numar fin̂ıt di prins autovalôrs.
Chest al rint il probleme plui dificil in maniere significative rispiet al
câs dulà che si à a disposizion une cuantitât infinide di dâts. In cheste
sezion a vegnin ilustrâts in curt cierts aspiets gjenerâi relat̂ıfs ae formu-
lazion matematiche dai problemis inviers ai autovalôrs cun dâts fin̂ıts. I
nestris riferiments principâi a son i doi articui (Barnes, 1991) e (Barnes
e Knobel, 1995).

3.2.1 Problemis inviers ai autovalôrs infin̂ıts e fin̂ıts

O disvilup̀ın la nestre analisi in riferiment al probleme di Sturm-Liouville{
y′′ + λy = q(x)y, x ∈ (0, 1),

y(0) = 0 = y(1),
(3.1)

dulà che q : [0, 1] → R e je une funzion. Sot minimis ipotesis a priori su
q(x) (par esempli, |q(x)| limitât in [0, 1]), il probleme ai autovalôrs (3.1)
al amet une famee numerabile di autocubiis {λn(q), yn(x; q)}∞n=1, cun
autovalôrs λ1(q) < λ2(q) < . . . , limn→+∞ λn(q) = +∞, e i corispondents
autovetôrs yn(x; q).

Denot̀ın cun q∗(x) il potenziâl no cognossût che o vin di determinâ,
o, almancul, di aprossimâ, doprant lis informazions dadis sui autovalôrs
dal probleme.
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Come che o vin za anticipât inte sezion introdutive 3.1, o pod̀ın
distingui dôs classis principâls di problemis inviers. La prime, che o vin
clamât probleme inviers infin̂ıt, e consist tal determinâ q∗(x) dal spetri
complet infin̂ıt {λn(q

∗)}∞n=1. La leterature in materie e je imense, che
si viodin, par esempli, i libris di Levitan (1987), Pöschel e Trubowitz
(1987), Gladwell (2004) e la rassegne classiche di McLaughlin (1986).
Pe nestre analisi al è util riclamâ il risultât classic di Hald (1978a), che
al à dimostrât che se doi potenziâi q(x) e q∗(x) a son dongje avonde e a
son ducj i doi simetrics in [0, 1] (q(x) = q(1− x) e q∗(x) = q∗(1− x) in
[0, 1]), alore

∥q − q∗∥L∞([0,1]) ≤ 2 · 108+38M+11M2
∞∑
n=1

|λn(q)− λn(q
∗)|, (3.2)

dulà che M > 0 e je une costante. Chi, L∞([0, 1]) al è il spazi des
funzions misurabilis di Lebesgue f : [0, 1] → R cuss̀ı che ∥f∥∞ =
ess supx∈[0,1]|f(x)| < ∞ cuasi dapardut in [0, 1]. La norme L∞ e riclame
il metodi adotât in tancj problemis di inzegnarie par confrontâ visive-
mentri dôs funzions. La stime (3.2) e mostre che par otign̂ı une aprossi-
mazion uniforme dal potenziâl (pâr) no cognossût q∗(x) nus coventin une
cuantitât infinide di dâts spetrâi. Ancje in cheste cundizion une vore fa-
vorevule, la stime di stabilitât (3.2) no je masse utile inte pratiche, stant
che la costante e assum valôrs cetant grancj ancje cuant che M al è piçul,
par esempli, dal ordin di 1.

Ancje cuant che il potenziâl nol è simetric, ma avonde dongje a un
potenziâl cognossût, al è in dut câs pussibil fâ une stime di stabilitât L2

di q − q∗ come che e à dimostrât McLaughlin (1988):

∥q − q∗∥2L2([0,1]) ≤ C
∞∑
n=1

(
(λn(q)− λn(q

∗))2 + n6(rn(q)− rn(q
∗))2

)
,

(3.3)
dulà che rn(q) = ∥yn(x; q)∥2L2([0,1])/y

′
n(0; q) a son costantis di normazion

e C e je une costante positive. O ricuard̀ın che, par ogni p, 1 ≤ p <
+∞, Lp([0, 1]) al è il spazi des funzions misurabilis di Lebesgue f :
[0, 1] → R cuss̀ı che la norme Lp e je limitade, par esempli ∥f∥Lp([0,1]) =(∫ 1

0 |f |p(x)dx
)1/p

< +∞. Ancjemò une volte, la stime (3.3) e mostre che

une cuantitât infinide di dâts spetrâi e conten informazions suficientis
par determinâ une aprossimazion L2 dal potenziâl q∗.

azions di frecuence causadis de variazion di masse a son coreladis cui
coeficients di Fourier gjeneralizâts de variazion di masse discognossude,
valutâts su la fonde di une specifiche famee di funzions; che si viodi, par
chest, la sezion 3.3. E ven proponude une procedure numeriche basade
suntun algoritmi iterat̂ıf di prin ordin e al ven furn̂ıt un risultât di con-
vergjence locâl de ricostruzion; si viodi la sezion 3.4. Par completece, si
à di riclamâ che la idee di colegâ i coeficients di Fourier dal coeficient
discognossût cu lis variazions di frecuence e je vecje e e va indaûr al con-
tribût fondamentâl dât ae teorie dai problemis inviers ai autovalôrs Borg
(1946); par aplicazions numerichis, che si viodin ancje Hald (1978b) e
Knobel e Lowe (1993). A son disponibilis estensions de metodiche ae
variazion di masse gjenerâl e ai dâts su lis vibrazions di flession che a
saran discutudis inte sezion 3.5.
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Chest al rint il probleme plui dificil in maniere significative rispiet al
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(3.1)
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q(x) (par esempli, |q(x)| limitât in [0, 1]), il probleme ai autovalôrs (3.1)
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autovetôrs yn(x; q).
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o, almancul, di aprossimâ, doprant lis informazions dadis sui autovalôrs
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I risultâts che o vin viodût parsore a domandin la cognossince di
infin̂ıts autovalôrs o, almancul, di une formule asintotiche par stimâ au-
tovalôrs di ordin plui grant. I modei matematics dai sistemis in vibrazion
reâi a pierdin in curt acuratece te stime dai autovalôrs di ordin plui âlt
e a furnissin stimis precisis dome pai autovalôrs plui bas. Si che duncje,
lis aplicazions reâls a compuartin, par lôr nature, problemis inviers fin̂ıts
e di cumò indenant si assum che i dâts spetrâi disponibii a sedin

ΛΛΛ = (Λ1,Λ2, . . . ,ΛN ), cun Λn = λn(q
∗), n = 1, . . . , N. (3.4)

Il probleme inviers di determinâ q∗ in mût che λn(q
∗) = Λn par ogni

n = 1, . . . , N nol à une soluzion univoche e, duncje, al covente introdusi
une definizion divierse di soluzion. Al è avonde naturâl domandâ che il
potenziâl q(x) al sodisfi lis cundizions

λn(q) = λn(q
∗), n = 1, . . . , N (o, almancul, λn(q) ≃ λn(q

∗)) (3.5)

e, cun di plui, al sarès miôr che la identificazion e puartàs a une aprossi-
mazion di q∗ cuant che N → +∞ (e, tal stes timp, che al fos garantide la
unicitât). Cualchidun di chescj aspiets al sarà tratât in curt tes sezions
sucessivis.

3.2.2 Continuitât dai autovalôrs

La continuitât dai autovalôrs a pet dal coeficient no cognossût q(x) e je
une cuistion fondamentâl te nestre analisi e e vignarà esaminade chi di
seguit.

Scomenc̀ın introdusint l’insiemi dai potenziâi. Dade une costante
H > 0, o defiǹın l’insiemi CH dai potenziâi limitâts:

CH = {q : [0, 1] → R| |q(x)| ≤ H}. (3.6)

Dot̀ın CH de norme

∥q∥2L1 =

∫ 1

0

∣∣∣∣
∫ x

0

∫ x2

0
q(x1)dx1dx2

∣∣∣∣ dx. (3.7)

Il risultât seguit̂ıf al derive di Barnes (1991).

Teoreme 3.1. Al sedi λn(q) l’n-esim autovalôr di (3.1), cun q ∈ CH .
E esist une costante K(n,H) che e dipent dome di n e H, cuss̀ı che par
ogni q1, q2 ∈ CH o vin

|λn(q1)− λn(q2)| ≤ K(n,H)∥q1 − q2∥2L1 . (3.8)

Coment̀ın la stime (3.8) e analiz̀ın lis sôs consecuencis.
La stime (3.8) e aferme che piçulis perturbazions inte norme 2L1 di

q a produsin piçulis variazions dai autovalôrs. Si che duncje, la uniche
informazion che e pues jessi estrate di un numar fin̂ıt di autovalôrs e
je une aprossimazion L1 de funzion

∫ x
0

∫ t
0 q(s)dsdt. Cun di plui, ogni

metodi che al smiri a dedusi une aprossimazion puntuâl di q(x) doprant
un numar fin̂ıt di autovalôrs al sarà ostacolât dal malcondizionament
prodot de dople derivazion di une aprossimazion L1 a

∫ x
0

∫ t
0 q(s)dsdt.

Par cap̂ı miôr il contignût di (3.8) o perturb̀ın il potenziâl q∗(x)
cun ∆q(x) = a cos bx, cun a, b numars reâi no nui. Indicant q(x) =
q∗(x) + ∆q(x), un calcul sempliç al mostre che

∥q − q∗∥2L1 =
∣∣∣ a
b2

∣∣∣
∫ 1

0
| cos bx− 1|dx ≤ 2

∣∣∣ a
b2

∣∣∣ ,

∥q − q∗∥L1 = |a|
∫ 1

0
| cos bx|dx ≤ |a|,

∥q − q∗∥L2 =
|a|
2

(
1 +

sin 2b

2b

)1/2

.

(3.9)

Si pues viodi che ∥q − q∗∥2L1 al è arbitrariementri piçul ancje se a al è
grant cuant che b al è grant (e dal ordin di a, par esempli). Al contrari,
lis normis ∥q− q∗∥L1 , ∥q− q∗∥L2 , ∥q− q∗∥L∞ a son grandis indipenden-
tementri dal valôr di b. Chest al dimostre che une perturbazion a cos bx
zontade a un coeficient q∗ cun a grant e b grant (e dal stes ordin di a)
e prodûs piçulis variazions suntun numar fin̂ıt di autovalôrs e, duncje, e
pues jessi considerade ancjemò tant che une aprossimazion ae soluzion
dal probleme inviers intal sens di (3.4). La presince di tiermins che a
ossilin une vore cun amplece grande, tant che ∆q(x) = a cos bx cun a e
b grancj, e distrûç, al è clâr, la cualitât di une ricostruzion di q∗(x). E
cheste e je une grande dificoltât cuant che si à a ce fâ cuntun probleme
inviers ai autovalôrs cun dâts fin̂ıts.

La zonte di dâts spetrâi che a vegnin di altris cundizions al contor
no garant̀ıs une aprossimazion puntuâl plui acurade di q∗(x). In realtât,
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potenziâl q(x) al sodisfi lis cundizions

λn(q) = λn(q
∗), n = 1, . . . , N (o, almancul, λn(q) ≃ λn(q

∗)) (3.5)
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sucessivis.

3.2.2 Continuitât dai autovalôrs
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seguit.

Scomenc̀ın introdusint l’insiemi dai potenziâi. Dade une costante
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je une aprossimazion L1 de funzion

∫ x
0

∫ t
0 q(s)dsdt. Cun di plui, ogni

metodi che al smiri a dedusi une aprossimazion puntuâl di q(x) doprant
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e prodûs piçulis variazions suntun numar fin̂ıt di autovalôrs e, duncje, e
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e al sedi Φ(CH) = SH ⊂ S. Supoǹın che il probleme inviers infin̂ıt al
vedi une soluzion uniche. O desider̀ın invert̂ı Φ e determinâ Ψ = Φ−1,
cun

Ψ : SH → CH , Ψ(λλλ(q∗)) = q∗, (3.11)

par dâts spetrâi disponibii λλλ(q∗) = {λ1(q
∗), λ2(q

∗), . . . , λn(q
∗), . . . }. In

particolâr, o volaressin che la funzion Ψ e fos une funzion continue, in
mût che piçulis variazions sui dâts spetrâi a produsessin piçulis varia-
zions sul coeficient, o sedi che par ogni insiemi viert V di CH , l’insiemi
Ψ−1(V ) al fos un insiemi viert di SH . A clâr, la pussibilitât di vê la
funzion Ψ continue e cres al calâ dal numar di insiemis vierts di CH ,
e chest nus da une spiegazion euristiche dal interès di rindi simpri plui
debile la topologjie di CH .

O defiǹın une topologjie su SH doprant il criteri di convergjence par
components: par {qj} ⊂ CH e q∗ ∈ CH , o dis̀ın che

lim
j→+∞

λλλ(qj) = λλλ(q∗) ⇐⇒ par ogni n ≥ 1 si à lim
j→+∞

λn(qj) = λn(q
∗).

(3.12)
O defiǹın in CH la topologjie plui debile là che ducj i autovalôrs a son
funzions continuis dal potenziâl, o ben

lim
j→+∞

qj = q∗ ⇐⇒ par ogni n ≥ 1 si à lim
j→+∞

λn(qj) = λn(q
∗).

(3.13)
Ae lûs de analisi dal probleme inviers fin̂ıt, che nol pues jessi risolt in
mût univoc, o sin puartâts a introdusi cheste definizion. Une secuence
{qN (x)} ⊂ CH e interpole i dâts spetrâi {λn(q

∗)} se par ogni N al esist
ϵN cuss̀ı che

|λn(qN )− λn(q
∗)| < ϵN par ogni n = 1, . . . , N, lim

N→+∞
ϵN = 0.

(3.14)
Chest teoreme, elaborât di Barnes (1991), al evidenzie la impuartance
di vê une secuence interpolante di coeficients. O introdus̀ın prin di dut
la norme 1Max in CH :

∥q∥1Max = max
x∈[0,1]

∣∣∣∣
∫ x

0
q(t)dt

∣∣∣∣ . (3.15)

Teoreme 3.2. Supoǹın che il probleme dai autovalôrs infin̂ıts al vedi
une soluzion uniche par dâts spetrâi disponibii {λn(q

∗)}∞n=1. E sedi

cuant che il coeficient al è plui regolâr, al pues sucedi che la continuitât
dai autovalôrs e sedi vere in topologjiis di CH plui debii de topologjie
indote de norme 2L1. Di consecuence, lis informazions che a puedin
jessi estratis su q∗(x) a son ancjemò mancul di chês che a puedin jessi
dedotis doprant la norme 2L1. Al è par chest mot̂ıf che al è interessant
cjatâ, o almancul aprossimâ, la topologjie plui debile di CH là che ducj
i autovalôrs a son continuis a pet dal coeficient q(x). Chest pont al sarà
calcolât inte sezion sucessive. Infin, o riclamı̀n che, se une topologjie di
CH e je plui debile di une altre, o sedi e à mancul insiemis vierts, alore e
à plui insiemis compats, e i insiemis compats a àn un rûl culminat̂ıf inte
dimostrazion dai teoremis di esistence pai problemis inviers.

3.2.3 Topologjiis debilis

O sclar̀ın cul̀ı parcè che al è interessant indebil̂ı simpri plui la topologjie
dal insiemi dai coeficients CH . Prin di dut, o riclamı̀n cualchi fat fonda-
mentâl.

Al sedi X un insiemi no vueit. Une famee τ di sotinsiemis di X e je
une topologjie di X se:

i) ∅ e X a fasin part di τ ;

ii) se Oi ∈ τ , i = 1, . . . ,M , alore
⋂M

i=1Oi ∈ τ ;

iii) ae Oα ∈ τ , α ∈ J , là che J al è un insiemi di indiçs, alore
⋃

α∈J Oα ∈
τ ,

o ben, la intersezion finide dai elements di τ e parten a τ e la union dai
elements di τ e parten a τ . I elements di τ a son clamâts insiemis vierts
di X. La cubie (X, τ) e je clamade spazi topologjic.

A sedin τ e τ ′ dôs topologjiis di X. τ ′ e je plui debile di τ se τ ′ e je
contignude in τ , o sedi τ ′ ⊂ τ .

E sedi f : (X, τX) → (Y, τY ) une funzion tra doi spazis topologjics.
f e je une funzion continue se e dome se par ogni insiemi viert V di Y ,
l’insiemi f−1(V ) al è un insiemi viert di X.

Cumò, torǹın al nestri probleme dai autovalôrs inviers (cun dâts in-
fin̂ıts) e denot̀ın cun S l’insiemi di dutis lis secuencis infinidis {a1, a2, . . . }
di numars reâi. O introdus̀ın la mape

Φ : CH → S, Φ(q) = {λ1(q), λ2(q), . . . , λn(q), . . . } ≡ λλλ(q) (3.10)
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di X. La cubie (X, τ) e je clamade spazi topologjic.
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dulà che

∥q∥3L1 =

 1

0


 x4

0

 x3

0

 x2

0
q(x1)dx1 dx2 dx3

 dx4, (3.20)

e par rivâ a une aprossimazion puntuâl di q si à di calcolâ trê derivadis
di une aprossimazion L1 di

 x4

0

 x3

0

 x2

0 q(x1)dx1 dx2 dx3.

3.3 Il metodi dai coeficients gjeneralizâts di Fourier: teorie. In cheste
sezion o present̀ın lis basis teorichis di un metodi di identificazion aplicât
a une nanotrâf sometude a vibrazion assiâl, là che o sav̀ın a priori che
il supuart de variazion di masse al parten a metât de trâf e i autovalôrs
doprâts tant che dâts a partegnin a un sôl spetri. Inte sô essence, il
metodi si base suntune secuence iterade di linearizazions dal probleme
inviers intun intor de configurazion di riferiment.

3.3.1 Formulazion dal probleme de identificazion di masse

La vibrazion assiâl libare infinitesimâl ae frecuence (radiant) ω =
√
λ di

une nanotrâf no perturbade o referenziâl uniforme fissade-fissade (o ben,
fissade a ducj i doi i cjâfs) di lungjece L e je guviernade dal probleme
dai autovalôrs (Akgoz e Civalek, 2014)




bvIV − av′′ = λρ0v, x ∈ (0, L),

v(0) = 0, v′′(0) = 0,

v(L) = 0, v′′(L) = 0,

(3.21)

Al sedi λ l’autovalôr e e sedi v = v(x) l’autofunzion corispondente. Il
coeficient ρ0 = costante, ρ0 > 0, al è la densitât di masse par unitât di
lungjece e a > 0 e b > 0 a son i coeficients di rigjiditât de fuarce assiâl
di prin e secont ordin, par esempli N(v) = av′ e Nh(v) = bv′′, che si
viodi (2.81) pe espression complete.

La secuence di autocubiis {λn, vn(x)}∞n=1 di (3.21) e je dade di

λn =
nπ
L

2

1

ρ0


a+ b

nπ
L

2


, vn(x) =


2

ρ0L
sin

nπx
L


,

(3.22)
dulà che e je stade doprade cheste cundizion di normalizazion de masse

 L

0
ρ0v

2
n(x) = 1, n ≥ 1. (3.23)

{qN (x)} ⊂ CH une secuence cualsisedi che e interpole i dâts {λn(q
∗)}∞n=1.

Alore
lim

N→+∞
∥qN − q∗∥1Max = 0. (3.16)

Il teoreme al dimostre che une secuence interpolante di coeficients e
converç e che dâts infin̂ıts (suficients par garant̂ı la unicitât) a contegnin
une aprossimazion uniforme de integrâl

∫ x
0 q∗(s)ds. I risultâts otignûts di

Hald e McLaughlin (che si viodin lis ecuazions (3.2) e (3.3)) a dimostrin
in efiets che i dâts infin̂ıts a contegnin tant plui di chest. In ogni câs,
par otign̂ı une aprossimazion puntuâl q∗(x), la aprossimazion uniforme
e à di jessi diferenziade une volte.

Par sfortune, il Teoreme 3.2 no si apliche al probleme inviers fin̂ıt.
Par chest probleme, difat, i dâts disponibii no bastin par calcolâ N grant
avonde. I Teoremis 3.1 e 3.2 a furnissin une sorte di limit “inferiôr” e
“superiôr” (forsit aprossimat̂ıf) aes informazions contignudis intai dâts
spetrâi fin̂ıts e infin̂ıts. In chest sens, il Teoreme 3.1 e je une prime stime
aprossimative de topologjie plui debile di CH li che ducj i autovalôrs a
son continuis.

O conclud̀ın riclamant il fat che, a man a man che il coeficient q
al devente plui regolâr, al è pussibil costrûı topologjiis plui debilis su
CH li che ducj i autovalôrs a son continuis. Par esempli, sedi CH,V il
sotinsiemi des funzions q ∈ CH che a àn variazion totâl al massim V (o
pod̀ın assumi par definizion che une funzion cun variazion totâl limitade
e sedi la diference tra dôs funzions monotonis). Alore e esist une costante
K(n,H, V ) cuss̀ı che par ogni q1, q2 ∈ CH,V o vin

|λn(q1)− λn(q2)| ≤ K(n,H, V )∥q1 − q2∥3Max, (3.17)

dulà che

∥q∥3Max = max
x∈[0,1]

∣∣∣∣
∫ x

0

∫ x3

0

∫ x2

0
q(x1)dx1 dx2 dx3

∣∣∣∣ . (3.18)

Chest al dimostre che une cuantitât finide di dâts e pues produsi, al
massim, une aprossimazion uniforme di

∫ x
0

∫ x3

0

∫ x2

0 q(x1)dx1 dx2 dx3.
Par cjatâ une aprossimazion puntuâl di q(x) al covente derivâ trê voltis
cheste aprossimazion uniforme. Cun di plui, pes funzions q ∈ CH,V cun
|q′(x)| ≤ L, al è pussibil dimostrâ che

|λn(q1)− λn(q2)| ≤ K(n,H, V, L)∥q1 − q2∥3L1 , (3.19)
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dulà che

∥q∥3L1 =

 1

0


 x4

0

 x3

0

 x2

0
q(x1)dx1 dx2 dx3

 dx4, (3.20)

e par rivâ a une aprossimazion puntuâl di q si à di calcolâ trê derivadis
di une aprossimazion L1 di

 x4

0

 x3

0

 x2

0 q(x1)dx1 dx2 dx3.

3.3 Il metodi dai coeficients gjeneralizâts di Fourier: teorie. In cheste
sezion o present̀ın lis basis teorichis di un metodi di identificazion aplicât
a une nanotrâf sometude a vibrazion assiâl, là che o sav̀ın a priori che
il supuart de variazion di masse al parten a metât de trâf e i autovalôrs
doprâts tant che dâts a partegnin a un sôl spetri. Inte sô essence, il
metodi si base suntune secuence iterade di linearizazions dal probleme
inviers intun intor de configurazion di riferiment.

3.3.1 Formulazion dal probleme de identificazion di masse

La vibrazion assiâl libare infinitesimâl ae frecuence (radiant) ω =
√
λ di

une nanotrâf no perturbade o referenziâl uniforme fissade-fissade (o ben,
fissade a ducj i doi i cjâfs) di lungjece L e je guviernade dal probleme
dai autovalôrs (Akgoz e Civalek, 2014)




bvIV − av′′ = λρ0v, x ∈ (0, L),

v(0) = 0, v′′(0) = 0,

v(L) = 0, v′′(L) = 0,

(3.21)

Al sedi λ l’autovalôr e e sedi v = v(x) l’autofunzion corispondente. Il
coeficient ρ0 = costante, ρ0 > 0, al è la densitât di masse par unitât di
lungjece e a > 0 e b > 0 a son i coeficients di rigjiditât de fuarce assiâl
di prin e secont ordin, par esempli N(v) = av′ e Nh(v) = bv′′, che si
viodi (2.81) pe espression complete.

La secuence di autocubiis {λn, vn(x)}∞n=1 di (3.21) e je dade di

λn =
nπ
L

2

1

ρ0


a+ b

nπ
L

2


, vn(x) =


2

ρ0L
sin

nπx
L


,

(3.22)
dulà che e je stade doprade cheste cundizion di normalizazion de masse

 L

0
ρ0v

2
n(x) = 1, n ≥ 1. (3.23)

{qN (x)} ⊂ CH une secuence cualsisedi che e interpole i dâts {λn(q
∗)}∞n=1.

Alore
lim

N→+∞
∥qN − q∗∥1Max = 0. (3.16)

Il teoreme al dimostre che une secuence interpolante di coeficients e
converç e che dâts infin̂ıts (suficients par garant̂ı la unicitât) a contegnin
une aprossimazion uniforme de integrâl

∫ x
0 q∗(s)ds. I risultâts otignûts di

Hald e McLaughlin (che si viodin lis ecuazions (3.2) e (3.3)) a dimostrin
in efiets che i dâts infin̂ıts a contegnin tant plui di chest. In ogni câs,
par otign̂ı une aprossimazion puntuâl q∗(x), la aprossimazion uniforme
e à di jessi diferenziade une volte.

Par sfortune, il Teoreme 3.2 no si apliche al probleme inviers fin̂ıt.
Par chest probleme, difat, i dâts disponibii no bastin par calcolâ N grant
avonde. I Teoremis 3.1 e 3.2 a furnissin une sorte di limit “inferiôr” e
“superiôr” (forsit aprossimat̂ıf) aes informazions contignudis intai dâts
spetrâi fin̂ıts e infin̂ıts. In chest sens, il Teoreme 3.1 e je une prime stime
aprossimative de topologjie plui debile di CH li che ducj i autovalôrs a
son continuis.

O conclud̀ın riclamant il fat che, a man a man che il coeficient q
al devente plui regolâr, al è pussibil costrûı topologjiis plui debilis su
CH li che ducj i autovalôrs a son continuis. Par esempli, sedi CH,V il
sotinsiemi des funzions q ∈ CH che a àn variazion totâl al massim V (o
pod̀ın assumi par definizion che une funzion cun variazion totâl limitade
e sedi la diference tra dôs funzions monotonis). Alore e esist une costante
K(n,H, V ) cuss̀ı che par ogni q1, q2 ∈ CH,V o vin

|λn(q1)− λn(q2)| ≤ K(n,H, V )∥q1 − q2∥3Max, (3.17)

dulà che

∥q∥3Max = max
x∈[0,1]

∣∣∣∣
∫ x

0

∫ x3

0

∫ x2

0
q(x1)dx1 dx2 dx3

∣∣∣∣ . (3.18)

Chest al dimostre che une cuantitât finide di dâts e pues produsi, al
massim, une aprossimazion uniforme di

∫ x
0

∫ x3

0

∫ x2

0 q(x1)dx1 dx2 dx3.
Par cjatâ une aprossimazion puntuâl di q(x) al covente derivâ trê voltis
cheste aprossimazion uniforme. Cun di plui, pes funzions q ∈ CH,V cun
|q′(x)| ≤ L, al è pussibil dimostrâ che

|λn(q1)− λn(q2)| ≤ K(n,H, V, L)∥q1 − q2∥3L1 , (3.19)
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analisi. Al è stât doprât in (Dilena et al., 2020) par cerni a posteriori i
risultâts de ricostruzion.

Segǹın cun {λn(ρ), vn(x; ρ)}∞n=1 lis autocubiis (3.21) cuant che il coe-
ficient ρ0 al è rimplaçât di ρ(x), o ben




bvIV − av′′ = λρv, x ∈ (0, L),

v(0) = 0, v′′(0) = 0,

v(L) = 0, v′′(L) = 0,

(3.30)

Su la fonde des nestris ipotesis i)-iii), par cualsisedi ϵ, 0 < ϵ ≤ ϵ, il pro-
bleme dai autovalôrs (3.21) al manten ancjemò lis proprietâts dal proble-
me dai autovalôrs no perturbât, e o segnar̀ın cun {λn(ρ), vn(x; ρ)}∞n=1,
lis autocubiis perturbadis, cun 0 < λ1(ρ) < ... < λn(ρ) < ... e cun
limn→∞ λn(ρ) = +∞. In cheste sezion si concentrar̀ın su chest probleme:

Dade la nanotrâf no perturbade, recuperâ la masse zontade rϵ(x) de
cognossince dai autovalôrs fin̂ıts {λn(ρ)}Nn=1.

Visantsi che la cognossince di un singul spetri complet nol è sufi-
cient par determinâ in mût univoc un coeficient gjenerâl rϵ(x) (che si
viodi Schueller (2001) e, pai operadôrs di Sturm-Liouville Hochstadt e
Lieberman (1978)), o formul̀ın ach̀ı un probleme inviers misc daûr di tip
Hochstadt-Lieberman cun dâts fin̂ıts, là che il coeficient di masse al è
cognossût in metât de nanotrâf, o sedi la variazion di masse rϵ(x) e à
supuart contignût in (0, L/2):

supuart(rϵ(x)) = {x ∈ [0, L]| rϵ(x) ̸= 0} ⊂

0,

L

2


. (3.31)

Indich̀ın tant che dâts a priori l’insiemi A des cuantitâts che a definissin
il model di nanotrâf no perturbade e i limits inferiôr e superiôr uniformis
de densitât di masse dal model perturbât ρ(x):

A = {a, b, ρ0, L, ρ−, ρ+}. (3.32)

La costante di separazion σ de nanotrâf no perturbade e dipent des
cuantitâts a priori A, e duncje no je cjapade dentri in maniere esplicite
in A.

3.3.2 Sensibilitât de autofrecuence ae masse zontade

Te part seguitive, o doprar̀ın une espression esplicite de perturbazion
di prin ordin dai autovalôrs rispiet al parametri ϵ. Vis̀ınsi che la n-

Si à di notâ che la secuence {λn}∞n=1 de nanotrâf no perturbade e je
discrete in maniere uniforme, o sedi e esist une costante di separazion
σ > 0, che e dipent dome dai parametris dal sisteme, cuss̀ı che

|λn − λm| ≥ σ, (3.24)

par ogni m,n ∈ N, cun m ̸= n. In particolâr, un calcul diret al dimostre
che

σ =
1

ρ0

(π
L

)2
[
a+ 2b

(π
L

)2
]
. (3.25)

Supoǹın che la masse par unitât di lungjece de nanotrâf e cambii e
denot̀ın cun

ρ(x) = ρ0 + rϵ(x), x ∈ [0, L], (3.26)

la densitât di masse par unitât di lungjece de nanotrâf perturbade. O
assumı̀n chestis ipotesis su la perturbazion rϵ.

i) Perturbazion L2 e piçulece:

(
1

L

∫ L

0
(rϵ(x))

2dx

) 1
2

= ϵρ0, (3.27)

dulà che il parametri di perturbazion ϵ al è un numar reâl cuss̀ı che
0 < ϵ ≤ ϵ̂, cuntun numar ridot che o sielzar̀ın plui indevant ϵ̂ < 1.

ii) Regolaritât:
rϵ(x) ∈ L∞([0, L]). (3.28)

iii) Limits inferiôr e superiôr uniformis:

0 < ρ− ≤ ρ(x) ≤ ρ+, x ∈ [0, L], (3.29)

cun ρ−, ρ+, ρ+ ≥ ρ0 + ∥rϵ∥∞, costantis indipendentis di ϵ.
La piçulece de variazion di masse rϵ(x) esprimude in (3.27) nus per-

met di calcolâ sedi perturbazions di piçule amplece dadis su grandis
porzions dal interval [0, L] (par esempli, variazions di masse difondudis),
sedi perturbazions cun valôrs alts concentrâts in piçulis parts di [0, L].
Cun di plui, al va notât che il probleme de identificazion de masse intes
nanotrâfs al compuarte variazions positivis de densitât di masse ρ0, o
sedi rϵ(x) ≥ 0 in [0, L]. Al è dificil cjapâ dentri chest vincul te nestre
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analisi. Al è stât doprât in (Dilena et al., 2020) par cerni a posteriori i
risultâts de ricostruzion.

Segǹın cun {λn(ρ), vn(x; ρ)}∞n=1 lis autocubiis (3.21) cuant che il coe-
ficient ρ0 al è rimplaçât di ρ(x), o ben




bvIV − av′′ = λρv, x ∈ (0, L),

v(0) = 0, v′′(0) = 0,

v(L) = 0, v′′(L) = 0,

(3.30)

Su la fonde des nestris ipotesis i)-iii), par cualsisedi ϵ, 0 < ϵ ≤ ϵ, il pro-
bleme dai autovalôrs (3.21) al manten ancjemò lis proprietâts dal proble-
me dai autovalôrs no perturbât, e o segnar̀ın cun {λn(ρ), vn(x; ρ)}∞n=1,
lis autocubiis perturbadis, cun 0 < λ1(ρ) < ... < λn(ρ) < ... e cun
limn→∞ λn(ρ) = +∞. In cheste sezion si concentrar̀ın su chest probleme:

Dade la nanotrâf no perturbade, recuperâ la masse zontade rϵ(x) de
cognossince dai autovalôrs fin̂ıts {λn(ρ)}Nn=1.

Visantsi che la cognossince di un singul spetri complet nol è sufi-
cient par determinâ in mût univoc un coeficient gjenerâl rϵ(x) (che si
viodi Schueller (2001) e, pai operadôrs di Sturm-Liouville Hochstadt e
Lieberman (1978)), o formul̀ın ach̀ı un probleme inviers misc daûr di tip
Hochstadt-Lieberman cun dâts fin̂ıts, là che il coeficient di masse al è
cognossût in metât de nanotrâf, o sedi la variazion di masse rϵ(x) e à
supuart contignût in (0, L/2):

supuart(rϵ(x)) = {x ∈ [0, L]| rϵ(x) ̸= 0} ⊂

0,

L

2


. (3.31)

Indich̀ın tant che dâts a priori l’insiemi A des cuantitâts che a definissin
il model di nanotrâf no perturbade e i limits inferiôr e superiôr uniformis
de densitât di masse dal model perturbât ρ(x):

A = {a, b, ρ0, L, ρ−, ρ+}. (3.32)

La costante di separazion σ de nanotrâf no perturbade e dipent des
cuantitâts a priori A, e duncje no je cjapade dentri in maniere esplicite
in A.

3.3.2 Sensibilitât de autofrecuence ae masse zontade

Te part seguitive, o doprar̀ın une espression esplicite de perturbazion
di prin ordin dai autovalôrs rispiet al parametri ϵ. Vis̀ınsi che la n-

Si à di notâ che la secuence {λn}∞n=1 de nanotrâf no perturbade e je
discrete in maniere uniforme, o sedi e esist une costante di separazion
σ > 0, che e dipent dome dai parametris dal sisteme, cuss̀ı che

|λn − λm| ≥ σ, (3.24)

par ogni m,n ∈ N, cun m ̸= n. In particolâr, un calcul diret al dimostre
che

σ =
1

ρ0

(π
L

)2
[
a+ 2b

(π
L

)2
]
. (3.25)

Supoǹın che la masse par unitât di lungjece de nanotrâf e cambii e
denot̀ın cun

ρ(x) = ρ0 + rϵ(x), x ∈ [0, L], (3.26)

la densitât di masse par unitât di lungjece de nanotrâf perturbade. O
assumı̀n chestis ipotesis su la perturbazion rϵ.

i) Perturbazion L2 e piçulece:

(
1

L

∫ L

0
(rϵ(x))

2dx

) 1
2

= ϵρ0, (3.27)

dulà che il parametri di perturbazion ϵ al è un numar reâl cuss̀ı che
0 < ϵ ≤ ϵ̂, cuntun numar ridot che o sielzar̀ın plui indevant ϵ̂ < 1.

ii) Regolaritât:
rϵ(x) ∈ L∞([0, L]). (3.28)

iii) Limits inferiôr e superiôr uniformis:

0 < ρ− ≤ ρ(x) ≤ ρ+, x ∈ [0, L], (3.29)

cun ρ−, ρ+, ρ+ ≥ ρ0 + ∥rϵ∥∞, costantis indipendentis di ϵ.
La piçulece de variazion di masse rϵ(x) esprimude in (3.27) nus per-

met di calcolâ sedi perturbazions di piçule amplece dadis su grandis
porzions dal interval [0, L] (par esempli, variazions di masse difondudis),
sedi perturbazions cun valôrs alts concentrâts in piçulis parts di [0, L].
Cun di plui, al va notât che il probleme de identificazion de masse intes
nanotrâfs al compuarte variazions positivis de densitât di masse ρ0, o
sedi rϵ(x) ≥ 0 in [0, L]. Al è dificil cjapâ dentri chest vincul te nestre
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La identitât che o vin ripuartât parsore e pues jessi otignude molti-
plicant la ecuazion diferenziâl in (3.21) (scrite pe n-esime autofunzion no
perturbade vn(x)) e chê in (3.30) (scrite pe n-esime autofunzion pertur-
bade vn(x; ρ)) rispetivementri par vn(x; ρ) e vn(x), e integrant par parts.
Sotraint i doi tiermins, doprant la simetrie dal operadôr e la cundizion
di normalizazion (3.23), si oten la ecuazion (3.37).

Doprant lis stimis (3.33), (3.35) inte identitât (3.37), par 0 < ϵ ≤ ϵ̂,
la variazion di prin ordin rispiet a ϵ dal n-esim autovalôr e je dade di

λn(ρ) = λn − λn

∫ L
2

0
rϵ(x)v

2
n(x)dx, (3.38)

par ogni n ≥ 1 e par rϵ che e sodisfe ancje (3.31).
Coment̀ın la espression (3.38). Come che si spietisi su la fonde de

teorie gjenerâl (che si viodi, par esempli, Courant e Hilbert (1966)), la
espression (3.38) e aferme che la zonte di masse e provoche un sbassa-
ment di ducj i autovalôrs. Cun plui precision, la variazion dai autovalôrs
(λn(ρ) − λn) e risulte jessi proporzionâl a λn. Chest fat al somee che
al vedi une cierte impuartance intal nestri probleme inviers, stant che
la variazion relative dai autovalôrs e apar̀ıs significative ancje par n di
ordin alt. In ultin, al va notât che la espression (3.38) e je indipendente
des cundizions al contor dal probleme dai autovalôrs e, duncje, la analisi
e podarès jessi slargjade ancje a altris insiemis di cundizions al contor
de nanotrâf.

3.3.3 Il probleme inviers linearizât

In cheste sezion o doprar̀ın la sensibilitât dai autovalôrs determinade in
(3.38) par formulâ une version linearizade dal probleme inviers intun
intor de nanotrâf no perturbade e par cjatâ une soluzion aprossimade.

Doprant la espression esplicite des autofunzions no perturbadis (3.22)
in (3.38), par ogni n ≥ 1 o vin

δλn ≡ 1− λn(ρ)

λn
=

∫ L
2

0
rϵ(x)Φn(x)dx,

Φn(x) ≡ (vn(x))
2 =

2

ρ0L
sin2

(nπx
L

)
,

(3.39)

che al mostre che la variazion relative di prin ordin dal n-esim autovalôr
e coinĉıt cul prodot scalâr tra la variazion di masse discognossude rϵ(x)

esime cubie di autovalôrs no perturbade e perturbade a son indicadis
rispetivementri cun {λn, vn} e {λn(ρ), vn(ρ)}.

O premet̀ın un risultât di continuitât des autocubiis di (3.30) rispiet
aes L2-perturbazions dal coeficient di masse e une identitât utile.

Teoreme 3.3. Cu la notazion parsore ripuartade, al sedi ρi(x) = ρ0 +
rϵ,i(x), dulà che rϵ,i(x) al sodisfe (3.27)–(3.29), i = 1, 2.

Al sedi {λn(ρi), vn(x; ρi)}, n ≥ 1, e sedi la n-esime cubie di auto-
valôrs di (3.30) par i = 1, 2.

Par ogni n ≥ 1, e esist une costante Cλ
n > 0, che e dipent dome dai

dâts a priori e n, cuss̀ı che

|λn(ρ1)− λn(ρ2)| ≤ Cλ
n∥ρ1 − ρ2∥L2([0,L]). (3.33)

Normaliz̀ın lis autofunzions vn(x; ρ1), vn(x; ρ2) in mût che

∫ L

0
ρ1v

2
n(x; ρ1) =

∫ L

0
ρ1v

2
n(x; ρ2) = 1 (3.34)

e v′n(0; ρ1)v
′
n(0; ρ2) > 0, n ≥ 1. Par ogni n ≥ 1, al esist un numar ϵ̂,

0 < ϵ̂ < 1, e une costante Cv
n > 0 e, sedi il numar sedi la costante, a a

dipendin dome dai dâts a priori e n, cuss̀ı che

||vn(x; ρ1)− vn(x; ρ2)||L2([0,L]) ≤ Cv
n∥ρ1 − ρ2∥L2([0,L]), (3.35)

par ogni ρ1, ρ2 che al sodisfe ∥ρ1 − ρ2∥L2([0,L]) ≤ L
1
2 ϵ̂.

Lis cuantitâts seguitivis a son definidis tant che diference tra cuan-
titâts perturbadis e no perturbadis::

∆λn = λn(ρ)− λn, ∆vn = vn(ρ)− vn, ∆ρ = ρ− ρ0 = rϵ, n ≥ 1.
(3.36)

Leme 3.4. Par ogni n ≥ 1 o vin

∆λn = −λn

∫ L

0
(∆ρ)v2n − λn

∫ L

0
∆ρ(∆vn)vn −∆λn

∫ L

0
ρ0(∆vn)vn−

−∆λn

∫ L

0
(∆ρ)v2n −∆λn

∫ L

0
(∆ρ)(∆vn)vn.

(3.37)
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La identitât che o vin ripuartât parsore e pues jessi otignude molti-
plicant la ecuazion diferenziâl in (3.21) (scrite pe n-esime autofunzion no
perturbade vn(x)) e chê in (3.30) (scrite pe n-esime autofunzion pertur-
bade vn(x; ρ)) rispetivementri par vn(x; ρ) e vn(x), e integrant par parts.
Sotraint i doi tiermins, doprant la simetrie dal operadôr e la cundizion
di normalizazion (3.23), si oten la ecuazion (3.37).

Doprant lis stimis (3.33), (3.35) inte identitât (3.37), par 0 < ϵ ≤ ϵ̂,
la variazion di prin ordin rispiet a ϵ dal n-esim autovalôr e je dade di

λn(ρ) = λn − λn

∫ L
2

0
rϵ(x)v

2
n(x)dx, (3.38)

par ogni n ≥ 1 e par rϵ che e sodisfe ancje (3.31).
Coment̀ın la espression (3.38). Come che si spietisi su la fonde de

teorie gjenerâl (che si viodi, par esempli, Courant e Hilbert (1966)), la
espression (3.38) e aferme che la zonte di masse e provoche un sbassa-
ment di ducj i autovalôrs. Cun plui precision, la variazion dai autovalôrs
(λn(ρ) − λn) e risulte jessi proporzionâl a λn. Chest fat al somee che
al vedi une cierte impuartance intal nestri probleme inviers, stant che
la variazion relative dai autovalôrs e apar̀ıs significative ancje par n di
ordin alt. In ultin, al va notât che la espression (3.38) e je indipendente
des cundizions al contor dal probleme dai autovalôrs e, duncje, la analisi
e podarès jessi slargjade ancje a altris insiemis di cundizions al contor
de nanotrâf.

3.3.3 Il probleme inviers linearizât

In cheste sezion o doprar̀ın la sensibilitât dai autovalôrs determinade in
(3.38) par formulâ une version linearizade dal probleme inviers intun
intor de nanotrâf no perturbade e par cjatâ une soluzion aprossimade.
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λn
=

∫ L
2

0
rϵ(x)Φn(x)dx,

Φn(x) ≡ (vn(x))
2 =

2

ρ0L
sin2

(nπx
L

)
,

(3.39)

che al mostre che la variazion relative di prin ordin dal n-esim autovalôr
e coinĉıt cul prodot scalâr tra la variazion di masse discognossude rϵ(x)

esime cubie di autovalôrs no perturbade e perturbade a son indicadis
rispetivementri cun {λn, vn} e {λn(ρ), vn(ρ)}.

O premet̀ın un risultât di continuitât des autocubiis di (3.30) rispiet
aes L2-perturbazions dal coeficient di masse e une identitât utile.

Teoreme 3.3. Cu la notazion parsore ripuartade, al sedi ρi(x) = ρ0 +
rϵ,i(x), dulà che rϵ,i(x) al sodisfe (3.27)–(3.29), i = 1, 2.

Al sedi {λn(ρi), vn(x; ρi)}, n ≥ 1, e sedi la n-esime cubie di auto-
valôrs di (3.30) par i = 1, 2.

Par ogni n ≥ 1, e esist une costante Cλ
n > 0, che e dipent dome dai

dâts a priori e n, cuss̀ı che

|λn(ρ1)− λn(ρ2)| ≤ Cλ
n∥ρ1 − ρ2∥L2([0,L]). (3.33)

Normaliz̀ın lis autofunzions vn(x; ρ1), vn(x; ρ2) in mût che

∫ L

0
ρ1v

2
n(x; ρ1) =

∫ L

0
ρ1v

2
n(x; ρ2) = 1 (3.34)

e v′n(0; ρ1)v
′
n(0; ρ2) > 0, n ≥ 1. Par ogni n ≥ 1, al esist un numar ϵ̂,

0 < ϵ̂ < 1, e une costante Cv
n > 0 e, sedi il numar sedi la costante, a a

dipendin dome dai dâts a priori e n, cuss̀ı che

||vn(x; ρ1)− vn(x; ρ2)||L2([0,L]) ≤ Cv
n∥ρ1 − ρ2∥L2([0,L]), (3.35)

par ogni ρ1, ρ2 che al sodisfe ∥ρ1 − ρ2∥L2([0,L]) ≤ L
1
2 ϵ̂.

Lis cuantitâts seguitivis a son definidis tant che diference tra cuan-
titâts perturbadis e no perturbadis::

∆λn = λn(ρ)− λn, ∆vn = vn(ρ)− vn, ∆ρ = ρ− ρ0 = rϵ, n ≥ 1.
(3.36)

Leme 3.4. Par ogni n ≥ 1 o vin

∆λn = −λn

∫ L

0
(∆ρ)v2n − λn

∫ L

0
∆ρ(∆vn)vn −∆λn

∫ L

0
ρ0(∆vn)vn−

−∆λn

∫ L

0
(∆ρ)v2n −∆λn

∫ L

0
(∆ρ)(∆vn)vn.

(3.37)
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n, k = 1, 2.... I coeficients Ank a puedin jessi valutâts in forme sierade

Ank =
2

4ρ20L
for k ̸= n, Ann =

3

4ρ20L

e un calcul diret al mostre che

det(Ank) = (2N + 1)


1

4ρ20L

N

, (3.43)

(Ank)
−1 = (4ρ20L)

2N − 1

2N + 1
if n = k, (Ank)

−1 = −(4ρ20L)
2

2N + 1
if n ̸= k,

n, k = 1, ...,M . Si che duncje, il sisteme (3.42) al à la soluzion in forme
sierade che o viodin chi daûr

βk = 4ρ20L


δλk −

2

2N + 1

N
j=1

δλj


 , k = 1, ..., N, (3.44)

e, in ultin,

rϵ(x) = 8ρ0

N
k=1


δλk −

2

2N + 1

N
j=1

δλj


 sin2


kπx

L


· χ[0,L2 ]. (3.45)

3.3.4 Une procedure di ricostruzion iterative

La stime di rϵ che o vin dât in (3.45) e pues jessi miorade iterant la
procedure di identificazion ilustrade te sezion di prime. Par semplificâ
la notazion, chi l’indiç ϵ al è stât ometût e λexp

n al indiche il valôr misurât
dal n-esim autovalôr de nanotrâf perturbade. I passaçs principâi de pro-
cedure di ricostruzion e l’algoritmi numeric corispondent a son ilustrâts
di file.

Supoǹın che ρ(0)(x) = ρ0 e sedi la masse par unitât di lungjece de
nanotrâf di riferiment. La masse discognossude par unitât di lungjece e
je determinade, midiant de iterazion, sul interval


0, L2



ρ(j+1)(x) = ρ(j)(x) + r(j)(x), j ≥ 0, (3.46)

dulà che l’incressiment

r(j)(x) =

N
k=1

β
(j)
k Φ

(j)
k (x)χ[0,L2 ]

= βββ(j) ·ΦΦΦ(j)(x)χ[0,L2 ]
(3.47)

e l’n-esim element de famee des funzions di influence {Φm(x)}∞m=1. Al è
propit a chest pont che e jentre in zûc la cundizion a priori (3.31) cemût
che al mostre il leme chi daûr.

Leme 3.5. La famee {Φm(x)}∞m=1 e je une base des funzions di cuadrât
integrabil definidis sul mieç interval de nanotrâf, par esempli l’insiemi
L2

(
0, L2

)
.

Cheste proprietât e derive dal fat che lis funzions {Φm(x)}∞m=1 a son
linearmentri indipendentis e a formin une famee complete in L2

(
0, L2

)
,

par esempli, par ogni rϵ(x) ∈ L2
(
0, L2

)
, lis cundizions

∫ L
2

0 rϵ(x)Φm(x)dx =

0 par ogni m ≥ 1 a implichin rϵ(x) = 0 in
(
0, L2

)
.

Par determinâ rϵ(x), une sielte naturâl sugjeride dal Leme 3.5 e je
chê di rapresentâ rϵ(x) su la famee {Φm(x)}∞m=1 tant che

rϵ(x) =
∞∑
k=1

βkΦk(x)χ[0,L2 ]
, (3.40)

dulà che χI : R → R e je la funzion carateristiche dal interval sierât
I ⊂ R: χI(x) = 1 if x ∈ I, χI(x) = 0 if x ∈ R \ I. I coeficients (βk)

∞
k=1

a fasin il rûl di coeficients gjeneralizâts di Fourier de variazion di masse
rϵ(x) discognossude valutade su la famee {Φm(x)}∞m=1.

Tes aplicazions reâls al è disponibil dome un numar fin̂ıt di auto-
valôrs, dis̀ın (λexp

1 , . . . , λexp
N ), cun N = 10 ÷ 20. Chest nus puarte a

calcolâ la N -esime aprossimazion dimensionâl finide de masse zontade:

rNϵ (x) =
N∑
k=1

βkΦk(x)χ[0,L2 ]
, βk = 0 par ogni k ≥ N + 1. (3.41)

Se o sostitùın (3.41) in (3.40) cun λn(ρ) = λexp
n par ogni n = 1, . . . , N ,

dulà che λexp
n al è l’n-esim autovalôr misurât, o otigǹın il sisteme lineâr

N ×N

δλn =

N∑
k=1

Ankβk, n = 1, ..., N, (3.42)

Ank =

∫ L
2

0
Φn(x)Φk(x)dx =

4

(ρ0L)2

∫ L
2

0
sin2

(nπx
L

)
sin2

(
kπx

L

)
dx,
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n, k = 1, 2.... I coeficients Ank a puedin jessi valutâts in forme sierade

Ank =
2

4ρ20L
for k ̸= n, Ann =

3

4ρ20L

e un calcul diret al mostre che

det(Ank) = (2N + 1)


1

4ρ20L

N

, (3.43)

(Ank)
−1 = (4ρ20L)

2N − 1

2N + 1
if n = k, (Ank)

−1 = −(4ρ20L)
2

2N + 1
if n ̸= k,

n, k = 1, ...,M . Si che duncje, il sisteme (3.42) al à la soluzion in forme
sierade che o viodin chi daûr

βk = 4ρ20L


δλk −

2

2N + 1

N
j=1

δλj


 , k = 1, ..., N, (3.44)

e, in ultin,

rϵ(x) = 8ρ0

N
k=1


δλk −

2

2N + 1

N
j=1

δλj


 sin2


kπx

L


· χ[0,L2 ]. (3.45)

3.3.4 Une procedure di ricostruzion iterative

La stime di rϵ che o vin dât in (3.45) e pues jessi miorade iterant la
procedure di identificazion ilustrade te sezion di prime. Par semplificâ
la notazion, chi l’indiç ϵ al è stât ometût e λexp

n al indiche il valôr misurât
dal n-esim autovalôr de nanotrâf perturbade. I passaçs principâi de pro-
cedure di ricostruzion e l’algoritmi numeric corispondent a son ilustrâts
di file.

Supoǹın che ρ(0)(x) = ρ0 e sedi la masse par unitât di lungjece de
nanotrâf di riferiment. La masse discognossude par unitât di lungjece e
je determinade, midiant de iterazion, sul interval


0, L2



ρ(j+1)(x) = ρ(j)(x) + r(j)(x), j ≥ 0, (3.46)

dulà che l’incressiment

r(j)(x) =

N
k=1

β
(j)
k Φ

(j)
k (x)χ[0,L2 ]

= βββ(j) ·ΦΦΦ(j)(x)χ[0,L2 ]
(3.47)

e l’n-esim element de famee des funzions di influence {Φm(x)}∞m=1. Al è
propit a chest pont che e jentre in zûc la cundizion a priori (3.31) cemût
che al mostre il leme chi daûr.

Leme 3.5. La famee {Φm(x)}∞m=1 e je une base des funzions di cuadrât
integrabil definidis sul mieç interval de nanotrâf, par esempli l’insiemi
L2

(
0, L2

)
.

Cheste proprietât e derive dal fat che lis funzions {Φm(x)}∞m=1 a son
linearmentri indipendentis e a formin une famee complete in L2

(
0, L2

)
,

par esempli, par ogni rϵ(x) ∈ L2
(
0, L2

)
, lis cundizions

∫ L
2

0 rϵ(x)Φm(x)dx =

0 par ogni m ≥ 1 a implichin rϵ(x) = 0 in
(
0, L2

)
.

Par determinâ rϵ(x), une sielte naturâl sugjeride dal Leme 3.5 e je
chê di rapresentâ rϵ(x) su la famee {Φm(x)}∞m=1 tant che

rϵ(x) =
∞∑
k=1

βkΦk(x)χ[0,L2 ]
, (3.40)

dulà che χI : R → R e je la funzion carateristiche dal interval sierât
I ⊂ R: χI(x) = 1 if x ∈ I, χI(x) = 0 if x ∈ R \ I. I coeficients (βk)

∞
k=1

a fasin il rûl di coeficients gjeneralizâts di Fourier de variazion di masse
rϵ(x) discognossude valutade su la famee {Φm(x)}∞m=1.

Tes aplicazions reâls al è disponibil dome un numar fin̂ıt di auto-
valôrs, dis̀ın (λexp

1 , . . . , λexp
N ), cun N = 10 ÷ 20. Chest nus puarte a

calcolâ la N -esime aprossimazion dimensionâl finide de masse zontade:

rNϵ (x) =
N∑
k=1

βkΦk(x)χ[0,L2 ]
, βk = 0 par ogni k ≥ N + 1. (3.41)

Se o sostitùın (3.41) in (3.40) cun λn(ρ) = λexp
n par ogni n = 1, . . . , N ,

dulà che λexp
n al è l’n-esim autovalôr misurât, o otigǹın il sisteme lineâr

N ×N

δλn =

N∑
k=1

Ankβk, n = 1, ..., N, (3.42)

Ank =

∫ L
2

0
Φn(x)Φk(x)dx =

4

(ρ0L)2

∫ L
2

0
sin2

(nπx
L

)
sin2

(
kπx

L

)
dx,
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3.3.5 Cualchi risultât di convergjence

O vin viodût che il nestri metodi di ricostruzion si base suntune secuence
di linearizazions dal probleme inviers intun intor de nanotrâf no pertur-
bade. Chi o calcol̀ın la convergjence dal metodi iterat̂ıf mostrât inte
ultime sotsezion. Il risultât principâl al è riassumût in chest teoreme.

Teoreme 3.6. Al esist ϵ̂ρ, 0 < ϵ̂ρ < 1 e ϵ̂ρ dipendent dome dai dâts
a priori, cuss̀ı che se |δλ(0)| ≤ ϵ̂λ < 1, alore la procedure iterative di
identificazion e converç uniformementri a une funzion ρ̄ = ρ̄(x) che e je
continue in

[
0, L2

]
.

Il risultât al aferme che la procedure iterative e je convergjente, a
cundizion che la variazion di masse discognossude e sedi piçule avonde
e che i autovalôrs sperimentâi a sedin dongje avonde ai autovalôrs no
perturbâts. La dimostrazion si base su trê passaçs principâi.

Passaç i) Esistence de invierse (A(j))−1 e limit di ∥(A(j))−1∥ a ogni
pas iterat̂ıf j ≥ 1: al derive dal fat che la invierse (A(0))−1 = A−1 e esist
al prin pas de iterazion (che si viodi (3.43)) e che la matriç gjeneriche
A(j) e je une piçule perturbazion di A.

Passaç ii) Limitazion di |δλδλδλ(j)| par controlâ la soluzion di b(j) a
(3.49) a ogni pas iterat̂ıf j ≥ 1: al derive essenzialmentri di une stime
atente dai tiermins di ordin superiôr a un su la bande a drete di (3.37)
in tiermins di |δλδλδλ(0)|. Si oten che |λn(ρ

(j)) − λexp
n | ≤ C|δλ(0)|2j a ogni

iterazion j ≥ 1, dulà che C > 0 e je une costante che e dipent dome dai
dâts a priori.

Passaç iii) Convergjence de serie
∑∞

i=0 r
(i)(x) in (3.50): e derive dal

fat che il i-esim tiermin al pues jessi limitât come ∥r(i)(x)∥L2([0,L/2]) ≤
C|δλ(0)|2i , i ≥ 0, dulà che C > 0 e je une costante che e dipent dome
dai dâts a priori.

Pai detais tecnics de dimostrazion si rimande a Dilena et al. (2019b).
Al è clâr che il teoreme parsore ripuartât nol permet dal sigûr di

concludi che la funzion limit ρ̄ e coincidi in efiets cu la distribuzion di
masse obiet̂ıf. Di fat, par analogjie cun problemis spetrâi inviers analics,
si spiet̀ın che la unicitât e sedi garantide dome cuant che a son disponibii
autovalôrs “infin̂ıts”.

I risultâts di une serie grande di simulazions, che a saran in part
ilustradis tal paragraf sucesŝıf, a dimostrin che la funzion ρ̄ e je in efiets
une buine aprossimazion dal coeficient di masse obiet̂ıf ρ par variazions

al è determinât risolvint il sisteme lineâr N ×N

δλ(j)
n ≡ 1− λexp

n

λn(ρ(j))
=

N
k=1

A
(j)
nkβ

(j)
k ,

n = 1, ..., N , o, in maniere ecuivalente, in forme compate

A(j)βββ(j) = δλδλδλ(j), (3.48)

cun βββ(j) = (β
(j)
1 , . . . , β

(j)
N ) e δλδλδλ(j) = (δλ

(j)
1 , . . . , δλ

(j)
N ). Chi, la cubie

{λn(ρ
(j)), vn(x; ρ

(j))} e la n-esime autocubie (normalizade in masse) dal
probleme 



bvIV − av′′ = λρ(j)v, x ∈ (0, L),

v(0) = 0, v′′(0) = 0,

v(L) = 0, v′′(L) = 0.

Cun di plui, Φ
(j)
k (x) = v2k(x; ρ

(j)) e la matriç (A
(j)
nk ) e je dade di

A
(j)
nk =

 L
2

0
Φ(j)
n (x)Φ

(j)
k (x)dx, n, k = 1, ..., N.

Suponint la esistence di (A(j))−1 (che si viodi la prossime sotsezion,
Passaç i)), o vin

r(j)(x) = (A(j))−1δλδλδλ(j) ·ΦΦΦ(j)(x)χ[0,L2 ]
(3.49)

e, di (3.46), o otigǹın

ρ(j)(x) = ρ0 +

j−1
i=0

r(i)(x), j ≥ 1. (3.50)

Intes nestris aplicazions, lis iterazions a continuin fin cuant che il coefi-
cient di masse inzornât al sodisfe il criteri

e ≡ 1

N




N
n=1


λexp
n − λn(ρ

(j+1)

λexp
n

2



1
2

< γ, (3.51)

par un piçul numar dât γ.
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3.3.5 Cualchi risultât di convergjence
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Teoreme 3.6. Al esist ϵ̂ρ, 0 < ϵ̂ρ < 1 e ϵ̂ρ dipendent dome dai dâts
a priori, cuss̀ı che se |δλ(0)| ≤ ϵ̂λ < 1, alore la procedure iterative di
identificazion e converç uniformementri a une funzion ρ̄ = ρ̄(x) che e je
continue in

[
0, L2

]
.

Il risultât al aferme che la procedure iterative e je convergjente, a
cundizion che la variazion di masse discognossude e sedi piçule avonde
e che i autovalôrs sperimentâi a sedin dongje avonde ai autovalôrs no
perturbâts. La dimostrazion si base su trê passaçs principâi.

Passaç i) Esistence de invierse (A(j))−1 e limit di ∥(A(j))−1∥ a ogni
pas iterat̂ıf j ≥ 1: al derive dal fat che la invierse (A(0))−1 = A−1 e esist
al prin pas de iterazion (che si viodi (3.43)) e che la matriç gjeneriche
A(j) e je une piçule perturbazion di A.

Passaç ii) Limitazion di |δλδλδλ(j)| par controlâ la soluzion di b(j) a
(3.49) a ogni pas iterat̂ıf j ≥ 1: al derive essenzialmentri di une stime
atente dai tiermins di ordin superiôr a un su la bande a drete di (3.37)
in tiermins di |δλδλδλ(0)|. Si oten che |λn(ρ

(j)) − λexp
n | ≤ C|δλ(0)|2j a ogni

iterazion j ≥ 1, dulà che C > 0 e je une costante che e dipent dome dai
dâts a priori.

Passaç iii) Convergjence de serie
∑∞

i=0 r
(i)(x) in (3.50): e derive dal

fat che il i-esim tiermin al pues jessi limitât come ∥r(i)(x)∥L2([0,L/2]) ≤
C|δλ(0)|2i , i ≥ 0, dulà che C > 0 e je une costante che e dipent dome
dai dâts a priori.

Pai detais tecnics de dimostrazion si rimande a Dilena et al. (2019b).
Al è clâr che il teoreme parsore ripuartât nol permet dal sigûr di

concludi che la funzion limit ρ̄ e coincidi in efiets cu la distribuzion di
masse obiet̂ıf. Di fat, par analogjie cun problemis spetrâi inviers analics,
si spiet̀ın che la unicitât e sedi garantide dome cuant che a son disponibii
autovalôrs “infin̂ıts”.

I risultâts di une serie grande di simulazions, che a saran in part
ilustradis tal paragraf sucesŝıf, a dimostrin che la funzion ρ̄ e je in efiets
une buine aprossimazion dal coeficient di masse obiet̂ıf ρ par variazions

al è determinât risolvint il sisteme lineâr N ×N

δλ(j)
n ≡ 1− λexp

n

λn(ρ(j))
=

N
k=1

A
(j)
nkβ

(j)
k ,

n = 1, ..., N , o, in maniere ecuivalente, in forme compate

A(j)βββ(j) = δλδλδλ(j), (3.48)

cun βββ(j) = (β
(j)
1 , . . . , β

(j)
N ) e δλδλδλ(j) = (δλ

(j)
1 , . . . , δλ

(j)
N ). Chi, la cubie

{λn(ρ
(j)), vn(x; ρ

(j))} e la n-esime autocubie (normalizade in masse) dal
probleme 



bvIV − av′′ = λρ(j)v, x ∈ (0, L),

v(0) = 0, v′′(0) = 0,

v(L) = 0, v′′(L) = 0.

Cun di plui, Φ
(j)
k (x) = v2k(x; ρ

(j)) e la matriç (A
(j)
nk ) e je dade di

A
(j)
nk =

 L
2

0
Φ(j)
n (x)Φ

(j)
k (x)dx, n, k = 1, ..., N.

Suponint la esistence di (A(j))−1 (che si viodi la prossime sotsezion,
Passaç i)), o vin

r(j)(x) = (A(j))−1δλδλδλ(j) ·ΦΦΦ(j)(x)χ[0,L2 ]
(3.49)

e, di (3.46), o otigǹın

ρ(j)(x) = ρ0 +

j−1
i=0

r(i)(x), j ≥ 1. (3.50)

Intes nestris aplicazions, lis iterazions a continuin fin cuant che il coefi-
cient di masse inzornât al sodisfe il criteri

e ≡ 1

N




N
n=1


λexp
n − λn(ρ

(j+1)

λexp
n

2



1
2

< γ, (3.51)

par un piçul numar dât γ.
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Figure 1: Densitât di masse par unitât di lungjece ρ = ρ(x) di identificâ.
Variazion di masse soreponude tant che in (3.53).

Ne = 200 elements fin̂ıts ecuidistants, che si son pandûts un bon com-
promès tra precision (erôr massim sui prins 15 autovalôrs, mancul dal
10−4 par cent) e cost computazionâl. Lis matriçs di masse e rigjiditâts
locâls a son stadis valutadis in forme esate e lis jentradis de matriç A a
son stadis determinadis cuntune regule di integrazion trapezoidâl. Dute
la procedure, sedi pal probleme diret che par chel inviers, e je stade fate
in ambient Scilab (version 5.5.2). Il timp di calcul necessari par une
iterazion singule dal algoritmi di identificazion par Ne = 200 e N = 15
al è stât di 0.5− 1.0 s. Lis simulazions preliminârs a sugjerissin di sielzi
γ = 10−5 intal criteri di arest e un massim di 10 iterazions si è dimostrât
suficient par otign̂ı la convergjence inte plui part des simulazions.

Il nestri campion al è la nanotrâf cilindriche doprade in (Kong et al.,
2009), cun rai r de sezion trasversâl circolâr ecuivalente pâr a 50 µm
(= 50 · 10−6 m) e lungjece L = 40r. I parametris di scjale de lungjece
dal materiâl si supon che a sedin avuâi e ℓ0 = ℓ1 = ℓ2 = ℓ = 17.6
µm; il modul di Young E al di 1.44 GPa; il coeficient di Poisson al è
ν = 0.38; e la densitât di masse volumetriche e je ρvol = 1000 kg/m3. I
coeficients a, b, ρ0 corispondents ai parametris parsore indicâts a cjapin
sù, in maniere rispetive, il valôr a = 11.310 N , b = 3.554 · 10−9 Nm2,
ρ0 = ρvol · πr2 = 7.854 · 10−6 kg/m.

di masse piçulis e regolârs rϵ, al cressi dal numar N des primis frecuencis
naturâls cjapadis dentri inte identificazion. In ogni câs, fin cumò, la
teorie matematiche ae base di chest probleme inviers no sclar̀ıs parcè
che ρ̄ al risulte jessi dongje dal coeficient di masse efet̂ıf ρ. Un contribût
al sclariment di chest pont al è presentât intal risultât sucesŝıf.

Teoreme 3.7. Ipotizin che rϵ(x) al sedi tâl di sodisfâ lis ipotesis (3.27)-
(3.29), (3.31) e, cun di plui, rϵ(x) ∈ C1([0, L2 ]) e ∥ r′′ϵ ∥L1([0,L/2]) al è
fin̂ıt. Alore

lim
N→+∞

r(0)ϵ (x) = rϵ(x), for x ∈
(
0,

L

2

)
, (3.52)

dulà che r
(0)
ϵ (x) al denote la variazion di masse determinade al prin pas

de procedure iterative de espression (3.45).

In altris peraulis, il coeficient di masse determinât risolvint il proble-
me inviers linearizât al converç in maniere puntuâl al coeficient obiet̂ıf
cuant il numar di autofrecuencis dopradis inte analisi al tint al infin̂ıt.

3.4 Il metodi dai coeficients gjeneralizâts di Fourier: aplicazion aes
vibrazions assiâls. In cheste sezion o present̀ın une selezion dai risultâts
otignûts intune serie di aplicazions dal metodi dai coeficients gjenera-
lizâts di Fourier doprant un numar fin̂ıt di autovalôrs che a partegnin a
un singul spetri. Par resons di spazi, la discussion e je limitade a une
famee particolâr di perturbazions di masse, in grât in ogni câs di descrivi
situazions impuartantis te pratiche, tant che chês cun variazions di masse
continuis o discontinuis, o cumbinazions des dôs. Par une analisi plui
detaiade, si rimande a Dilena et al. (2019b).

3.4.1 Impostazions numerichis e campions di prove

La aplicazion pratiche dal metodi di ricostruzion descrit inte sezion 3.3.1
e domande il disvilup di un codiç numeric specific. Il nestri codiç si base
suntun model a elements fin̂ıts de nanotrâf, cun aprossimazion poli-
nomiâl di tierç grât dal spostament assiâl in ogni element fin̂ıt. A son
stadis fatis provis preliminârs su la nanotrâf no perturbade par selezionâ
une maie adeguade. La plui part des simulazions e je stade fate cun
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Figure 1: Densitât di masse par unitât di lungjece ρ = ρ(x) di identificâ.
Variazion di masse soreponude tant che in (3.53).

Ne = 200 elements fin̂ıts ecuidistants, che si son pandûts un bon com-
promès tra precision (erôr massim sui prins 15 autovalôrs, mancul dal
10−4 par cent) e cost computazionâl. Lis matriçs di masse e rigjiditâts
locâls a son stadis valutadis in forme esate e lis jentradis de matriç A a
son stadis determinadis cuntune regule di integrazion trapezoidâl. Dute
la procedure, sedi pal probleme diret che par chel inviers, e je stade fate
in ambient Scilab (version 5.5.2). Il timp di calcul necessari par une
iterazion singule dal algoritmi di identificazion par Ne = 200 e N = 15
al è stât di 0.5− 1.0 s. Lis simulazions preliminârs a sugjerissin di sielzi
γ = 10−5 intal criteri di arest e un massim di 10 iterazions si è dimostrât
suficient par otign̂ı la convergjence inte plui part des simulazions.

Il nestri campion al è la nanotrâf cilindriche doprade in (Kong et al.,
2009), cun rai r de sezion trasversâl circolâr ecuivalente pâr a 50 µm
(= 50 · 10−6 m) e lungjece L = 40r. I parametris di scjale de lungjece
dal materiâl si supon che a sedin avuâi e ℓ0 = ℓ1 = ℓ2 = ℓ = 17.6
µm; il modul di Young E al di 1.44 GPa; il coeficient di Poisson al è
ν = 0.38; e la densitât di masse volumetriche e je ρvol = 1000 kg/m3. I
coeficients a, b, ρ0 corispondents ai parametris parsore indicâts a cjapin
sù, in maniere rispetive, il valôr a = 11.310 N , b = 3.554 · 10−9 Nm2,
ρ0 = ρvol · πr2 = 7.854 · 10−6 kg/m.

di masse piçulis e regolârs rϵ, al cressi dal numar N des primis frecuencis
naturâls cjapadis dentri inte identificazion. In ogni câs, fin cumò, la
teorie matematiche ae base di chest probleme inviers no sclar̀ıs parcè
che ρ̄ al risulte jessi dongje dal coeficient di masse efet̂ıf ρ. Un contribût
al sclariment di chest pont al è presentât intal risultât sucesŝıf.

Teoreme 3.7. Ipotizin che rϵ(x) al sedi tâl di sodisfâ lis ipotesis (3.27)-
(3.29), (3.31) e, cun di plui, rϵ(x) ∈ C1([0, L2 ]) e ∥ r′′ϵ ∥L1([0,L/2]) al è
fin̂ıt. Alore

lim
N→+∞

r(0)ϵ (x) = rϵ(x), for x ∈
(
0,

L

2

)
, (3.52)

dulà che r
(0)
ϵ (x) al denote la variazion di masse determinade al prin pas

de procedure iterative de espression (3.45).

In altris peraulis, il coeficient di masse determinât risolvint il proble-
me inviers linearizât al converç in maniere puntuâl al coeficient obiet̂ıf
cuant il numar di autofrecuencis dopradis inte analisi al tint al infin̂ıt.

3.4 Il metodi dai coeficients gjeneralizâts di Fourier: aplicazion aes
vibrazions assiâls. In cheste sezion o present̀ın une selezion dai risultâts
otignûts intune serie di aplicazions dal metodi dai coeficients gjenera-
lizâts di Fourier doprant un numar fin̂ıt di autovalôrs che a partegnin a
un singul spetri. Par resons di spazi, la discussion e je limitade a une
famee particolâr di perturbazions di masse, in grât in ogni câs di descrivi
situazions impuartantis te pratiche, tant che chês cun variazions di masse
continuis o discontinuis, o cumbinazions des dôs. Par une analisi plui
detaiade, si rimande a Dilena et al. (2019b).

3.4.1 Impostazions numerichis e campions di prove

La aplicazion pratiche dal metodi di ricostruzion descrit inte sezion 3.3.1
e domande il disvilup di un codiç numeric specific. Il nestri codiç si base
suntun model a elements fin̂ıts de nanotrâf, cun aprossimazion poli-
nomiâl di tierç grât dal spostament assiâl in ogni element fin̂ıt. A son
stadis fatis provis preliminârs su la nanotrâf no perturbade par selezionâ
une maie adeguade. La plui part des simulazions e je stade fate cun
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La determinazion dal coeficient di masse continui e risulte une vore
precise ancje cuant che inte identificazion a vegnin dopradis dome lis
primis 9− 12 autofrecuencis. Par un risultât tipic, si rimande ae Figure
2 .

In câs di coeficient discontinui, si verifichin ossilazions spuriis in
prossimitât dal salt, cun amplece che e risulte proporzionâl ae intensitât
dal salt. Di consecuence, la identificazion de part regolâr dal coeficient
di masse par valôrs piçui di t e pues deventâ imprecise. In chescj câs,
al somee che a coventin almancul 15 − 20 frecuencis iniziâls par otign̂ı
une precision acetabile (che si viodi la Figure 3). Il metodi al mostre
ancje une buine capacitât di identificâ variazions di masse cun supuarts
diszontâts, in particolâr cuant che i valôrs di t1 e t a son dongje.

3.5 Estension aes vibrazions flessionâls. In cheste sezion o slargj̀ın la
analisi dal probleme inviers ae definizion de masse zontade distribuide
in nanotrâfs sometudis a vibrazions di flession. In particolâr, o calcol̀ın
la situazion plui gjenerâl là che la variazion di masse e pues influençâ
dute la lungjece de nanotrâf, no dome metât dal as, come che o vin fat
inte sezion di prime pes vibrazions assiâls. O viodar̀ın che pe identi-
ficazion de masse a puedin jessi doprâts (almancul) doi spetris parziâi,
corispondents a cundizions aes estremitâts diviersis (Dilena et al., 2020).

3.5.1 Formulazion dal probleme inviers

La vibrazion di flession libare infinitesimâl ae frecuence radiante
√
λ

de nanotrâf uniforme no perturbade, di lungjece L e in cundizions aes
estremitâts supuartadis, e je guviernade dal probleme dai autovalôrs
(Kong et al., 2009)




SuIV −KuV I = λρ0u, x ∈ (0, L),

u(0) = 0, −Su′′(0) +KuIV (0) = 0, u′′(0) = 0,

u(L) = 0, −Su′′(L) +KuIV (L) = 0, u′′(L) = 0,

(3.54)

dulà che λ al è l’autovalôr e u = u(x) la autofunzion associade. Il
coeficient ρ0 > 0 al è la densitât di masse no perturbade par unitât di
lungjece. I coeficients costitut̂ıfs S > 0 e K > 0 a son stâts defin̂ıts in
(2.89).

3.4.2 Cualchi risultât

O ripuart̀ın cualchi risultât rapresentat̂ıf relat̂ıf ae identificazion di doi
prof̂ıi di masse zontade soreponûts, un regolâr e chel altri di forme trian-
golâr, cuntune discontinuitât di salt. Plui di preĉıs, la densitât di masse
di determinâ e à la espression

ρ(x) = ρ0 + ρ0max

{
t cos2

(
π(x− s)

c

)
χI ,

t1
c1
(x− (s1 − c1))χI1

}
,

(3.53)
dulà che I = [s − c

2 , s +
c
2 ], I1 = [s1 − c1, s1] ⊂

[
0, L2

]
. Lis cuantitâts

c e c1 a son, in maniere rispetive, lis lungjecis dai intervai I e I1, e
ρ0t > 0, ρ0t1 > 0 a son lis variazions di amplece massime corispondentis
(Figure 1). I parametris c e c1 a son stât ipotizâts compagns di 0.2L
e la identificazion e je stade fate doprant Ne = 200, 400 elements fin̂ıts
ecuidistants, in maniere rispetive par N = 6, 9, 12, 15 e N = 20, 25. Al
va notât che, daûr i valôrs di s1 e t1, il coeficient ρ(x) in (3.53) al pues
jessi continui o discontinui.
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Figure 2: Ricostruzion des variazions di masse soreponude tant che in
(3.53), cun s

L = 0.25, t = 0.50, s1
L = 0.25, t1 = 0.10, doprant lis primis

N = 6 - 15 autofrecuencis.
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La determinazion dal coeficient di masse continui e risulte une vore
precise ancje cuant che inte identificazion a vegnin dopradis dome lis
primis 9− 12 autofrecuencis. Par un risultât tipic, si rimande ae Figure
2 .

In câs di coeficient discontinui, si verifichin ossilazions spuriis in
prossimitât dal salt, cun amplece che e risulte proporzionâl ae intensitât
dal salt. Di consecuence, la identificazion de part regolâr dal coeficient
di masse par valôrs piçui di t e pues deventâ imprecise. In chescj câs,
al somee che a coventin almancul 15 − 20 frecuencis iniziâls par otign̂ı
une precision acetabile (che si viodi la Figure 3). Il metodi al mostre
ancje une buine capacitât di identificâ variazions di masse cun supuarts
diszontâts, in particolâr cuant che i valôrs di t1 e t a son dongje.

3.5 Estension aes vibrazions flessionâls. In cheste sezion o slargj̀ın la
analisi dal probleme inviers ae definizion de masse zontade distribuide
in nanotrâfs sometudis a vibrazions di flession. In particolâr, o calcol̀ın
la situazion plui gjenerâl là che la variazion di masse e pues influençâ
dute la lungjece de nanotrâf, no dome metât dal as, come che o vin fat
inte sezion di prime pes vibrazions assiâls. O viodar̀ın che pe identi-
ficazion de masse a puedin jessi doprâts (almancul) doi spetris parziâi,
corispondents a cundizions aes estremitâts diviersis (Dilena et al., 2020).

3.5.1 Formulazion dal probleme inviers

La vibrazion di flession libare infinitesimâl ae frecuence radiante
√
λ

de nanotrâf uniforme no perturbade, di lungjece L e in cundizions aes
estremitâts supuartadis, e je guviernade dal probleme dai autovalôrs
(Kong et al., 2009)




SuIV −KuV I = λρ0u, x ∈ (0, L),

u(0) = 0, −Su′′(0) +KuIV (0) = 0, u′′(0) = 0,

u(L) = 0, −Su′′(L) +KuIV (L) = 0, u′′(L) = 0,

(3.54)

dulà che λ al è l’autovalôr e u = u(x) la autofunzion associade. Il
coeficient ρ0 > 0 al è la densitât di masse no perturbade par unitât di
lungjece. I coeficients costitut̂ıfs S > 0 e K > 0 a son stâts defin̂ıts in
(2.89).

3.4.2 Cualchi risultât

O ripuart̀ın cualchi risultât rapresentat̂ıf relat̂ıf ae identificazion di doi
prof̂ıi di masse zontade soreponûts, un regolâr e chel altri di forme trian-
golâr, cuntune discontinuitât di salt. Plui di preĉıs, la densitât di masse
di determinâ e à la espression

ρ(x) = ρ0 + ρ0max

{
t cos2

(
π(x− s)

c

)
χI ,

t1
c1
(x− (s1 − c1))χI1

}
,

(3.53)
dulà che I = [s − c

2 , s +
c
2 ], I1 = [s1 − c1, s1] ⊂

[
0, L2

]
. Lis cuantitâts

c e c1 a son, in maniere rispetive, lis lungjecis dai intervai I e I1, e
ρ0t > 0, ρ0t1 > 0 a son lis variazions di amplece massime corispondentis
(Figure 1). I parametris c e c1 a son stât ipotizâts compagns di 0.2L
e la identificazion e je stade fate doprant Ne = 200, 400 elements fin̂ıts
ecuidistants, in maniere rispetive par N = 6, 9, 12, 15 e N = 20, 25. Al
va notât che, daûr i valôrs di s1 e t1, il coeficient ρ(x) in (3.53) al pues
jessi continui o discontinui.
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Figure 2: Ricostruzion des variazions di masse soreponude tant che in
(3.53), cun s

L = 0.25, t = 0.50, s1
L = 0.25, t1 = 0.10, doprant lis primis

N = 6 - 15 autofrecuencis.
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alore si d̂ıs che la nanotrâf e je in cundizions aes estremitâts supuartade-
scorevule, vâl a d̂ı che une des dôs estremitâts e je fissade a un supuart
fis (x = 0), intant che chê altre e à un supuart scorevul (x = L). Lis
corispondentis cubiis di autovalôrs no perturbadis

{
λSℓ
n , uSℓn (x)

}∞
n=1

a
son

λSℓ
n =

(
(2n− 1)π

2L

)6[ 1

ρ0

(
K +

S( (2n−1)π
2L

)2
)]

,

uSℓn (x) =

√
2

ρ0L
sin

(
(2n− 1)πx

2L

)
,

(3.57)

cun
∫ L
0 ρ0(u

Sℓ
n (x))2dx = 1 par ogni n ≥ 1.

Assumı̀n che la variazion de densitât di masse e sedi tant che in
(3.26) e che rϵ(x) la variazion discognossude. Supoǹın che rϵ(x) e sodisfi
(3.27)-(3.29), ma no necessariementri (3.31), par esempli, il supuart di
rϵ(x) cumò al è un sotinsiemi dal interval int̂ır [0, L].

Segǹın cun {λS
n(ρ), u

S
n(x; ρ)}∞n=1, {λSℓ

n (ρ), uSℓn (x; ρ)}∞n=1, in maniere
rispetive, lis autocubiis des cundizions aes estremitâts supuartadis (S)
e supuartade-scorevule (Sℓ) cuant che ρ0 al è sostitûıt di ρ(x). O vuel̀ın
costrûı une aprossimazion di ρ(x) o, in maniere ecuivalente, di rϵ(x),
doprant une cuantitât finide di dâts spetrâi che a partegnin al spetri
supuartât e supuartât-scorevul, o sedi l’insiemi {λS

n(ρ)}Nn=1

⋃
{λSℓ

m (ρ)}Mm=1,
dulà che N , M a son numars int̂ırs dâts.

3.5.2 Il metodi di ricostruzion

La ricostruzion de masse e je otignude tant che gjeneralizazion dal
metodi presentât inte sezion 3.3.1, e si base su linearizazions iterativis
dal probleme inviers intun intor de nanotrâf no perturbade. Chi, o lass̀ın
in bande i detais e si concentr̀ın sui passaçs principâi de analisi.

O scomenc̀ın cu la soluzion dal probleme inviers linearizât in pros-
simitât de nanotrâf no perturbade, che e je il prin pas de procedure
di identificazion iterative descrite te sezion 3.3.1 pe vibrazion assiâl. Il
cambiament di prin ordin di un autovalôr de nanotrâf no perturbade al
è dât di

δλS
n =

∫ L

0
rϵ(x)Φ

S
n(x)dx, δλSℓ

m =

∫ L

0
rϵ(x)Φ

Sℓ
m (x)dx (3.58)
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Figure 3: Ricostruzion des variazions di masse soreponudis tant che in
(3.53), cun s

L = 0.15, t = 0.50, s1
L = 0.25, t1 = 0.50, doprant lis primis

N = 6-25 autofrecuencis.

Lis cubiis di autovalôrs {λS
n , u

S
n(x)}∞n=1 di (3.54) a son

λS
n =

(nπ
L

)6
[
1

ρ0

(
K +

S

(nπL )2

)]
, uSn(x) =

√
2

ρ0L
sin

(nπx
L

)
,

(3.55)
dulà che e je stade cjapade in considerazion la cundizion di normalizazion
de masse, n ≥ 1.

Se in (3.54) lis cundizions al contor in x = L a vegnin modificadis in

u′(L) = 0, −Su′′′(L) +KvV (L) = 0, Ku′′′(L) = 0, (3.56)
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alore si d̂ıs che la nanotrâf e je in cundizions aes estremitâts supuartade-
scorevule, vâl a d̂ı che une des dôs estremitâts e je fissade a un supuart
fis (x = 0), intant che chê altre e à un supuart scorevul (x = L). Lis
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Assumı̀n che la variazion de densitât di masse e sedi tant che in
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(3.27)-(3.29), ma no necessariementri (3.31), par esempli, il supuart di
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supuartât e supuartât-scorevul, o sedi l’insiemi {λS
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⋃
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dulà che N , M a son numars int̂ırs dâts.
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metodi presentât inte sezion 3.3.1, e si base su linearizazions iterativis
dal probleme inviers intun intor de nanotrâf no perturbade. Chi, o lass̀ın
in bande i detais e si concentr̀ın sui passaçs principâi de analisi.

O scomenc̀ın cu la soluzion dal probleme inviers linearizât in pros-
simitât de nanotrâf no perturbade, che e je il prin pas de procedure
di identificazion iterative descrite te sezion 3.3.1 pe vibrazion assiâl. Il
cambiament di prin ordin di un autovalôr de nanotrâf no perturbade al
è dât di
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Figure 3: Ricostruzion des variazions di masse soreponudis tant che in
(3.53), cun s

L = 0.15, t = 0.50, s1
L = 0.25, t1 = 0.50, doprant lis primis

N = 6-25 autofrecuencis.

Lis cubiis di autovalôrs {λS
n , u

S
n(x)}∞n=1 di (3.54) a son

λS
n =

(nπ
L

)6
[
1

ρ0

(
K +

S

(nπL )2

)]
, uSn(x) =

√
2

ρ0L
sin

(nπx
L

)
,

(3.55)
dulà che e je stade cjapade in considerazion la cundizion di normalizazion
de masse, n ≥ 1.

Se in (3.54) lis cundizions al contor in x = L a vegnin modificadis in

u′(L) = 0, −Su′′′(L) +KvV (L) = 0, Ku′′′(L) = 0, (3.56)
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3.5.3 Simulazions e risultâts

Il metodi di ricostruzion al è stât testât suntune serie slargjade di simu-
lazions cu la variazion di masse soreponude definide in (3.53). Ach̀ı in
rie, o discut̀ın in curt i risultâts principâi par N = M .

Lis proprietâts dal materiâl dal campion a corispuindin a chês dal
materiâl epossidic e a son stadis dopradis in (Lam et al., 2003), o sedi,
modul di Young E = 1.44 GPa, coeficient di Poisson ν = 0.38, densitât
di masse volumetriche ρvol = 1220 kg/m3, e parametris di scjale dal
materiâl ℓ0 = ℓ1 = ℓ2 = ℓ = 17.6 µm. Si supon che la sezion trasversâl
e sedi retangolâr, cun altece h = 50 µm, largjece b = 2h, aree A =
bh, moment di inerzie I = bh3/12, e lungjece L = 20h. I parametris
parsore indicâts a puartin a chescj coeficients: S = 4.36 · 10−9 Nm2,
K = 4.71 · 10−19 Nm4, ρ0 = ρvol ·A = 6.1 · 10−6 kg/m.

La identificazion de variazion continue di masse e da bogns risultâts
e la precision e miore al cressi di N . La definizion dai coeficients di-
scontinuis, tant che previodût, al puarte a diferencis analighis a chês
cjatadis intal câs assiâl. Par brevitât, si concentrar̀ın dome sui câs là
che la variazion discontinue di masse in (3.53) e je supuartade su doi
intervai diszontâts di (0, L). Tal câs di variazions di masse L∞-piçulis
(e, duncje, ancje di amplece di salt piçule), i risultâts a son preĉıs avonde
par N = 12− 15, gjavât un piçul interval dongje de discontinuitât, che
si viodi la Figure 4. Cuant che la variazion di masse no je piçule e la
amplece dal salt e je paragonabile al valôr massim dal tiermin regolâr
de variazion di masse (o ancje plui grant), par N fin a 15 a comparissin
ossilazions spuriis che si propaghin in dut l’interval, cuntune amplece
che e decjât lontan dal salt. In chescj câs si oten une precision cressinte
lontan dal salt e incressint N , par esempli N fin a 20−25. Infin, cundut il
fat che la convergjence de procedure di identificazion e vedi caratar locâl
e e domandi di lavorâ intun intor piçul avonde de nanotrâf di riferiment,
al va notât che il metodi al mostre un potenziâl inspietât intal tratâ
variazions di masse no necessariementri piçulis; che si viodi la Figure 5.

3.5.4 Une validazion sperimentâl

I dâts sperimentâi sui cambiaments indots de autofrecuence dovûts ae
masse zontade tes nanotrâfs no son tancj. O vin testât il nestri metodi
sui risultâts sperimentâi ripuartâts in (Hanay et al., 2015). Si rimande a

par cundizions aes estremitâts, rispetivementri, supuartadis e supuartade-
scorevule, dulà che ΦS

n(x) =
�
uSn(x)

2
, ΦSℓ

m (x) =
�
uSℓm (x)

2
, n = 1, . . . , N ,

m = 1, . . . ,M . Lis espressions (3.58) a puedin jessi determinadis lant
daûr dai argoments doprâts parsore par otign̂ı (3.39). Ecezion fate par
une costante moltiplicative no essenziâl, o vin


ΦS
n(x),Φ

Sℓ
m (x)

∞

n,m=1

=


1− cos


kπx

L

∞

k=1

(3.59)

e cheste famee e je une base dal insiemi L2([0, L]) des funzions di cuadrât
integrabil definidis su dut l’interval [0, L]. Al è duncje resonevul cir̂ı
une aprossimazion finide di ordin (N +M) di rϵ(x) su chest insiemi di
funzions, o sedi

rϵ(x) =
N

n=1

βS
nΦ

S
n(x) +

M
m=1

βSℓ
m ΦSℓ

m (x), (3.60)

dulà che

βS
n

N

n=1
,

βSℓ
m

M

m=1
a fasin il rûl di coeficients gjeneralizâts

di Fourier di rϵ(x). Chescj coeficients a puedin jessi determinâts metint
la espression (3.60) in (3.58) e risolvint il sisteme lineâr corispondent
(N +M)× (N +M) Aβββ = δλδλδλ, dulà che βββ = (βS

1 , . . . , β
S
N , βSℓ

1 , . . . , βSℓ
M ),

δλδλδλ = (δλS
1 , . . . , δλ

S
N , δλSℓ

1 , . . . , δλSℓ
M ), e lis jentradis de matriç A a son

definidis come chês de matriç A introdote te sezion 3.3.1. Doprant lis
espressions esplicitis di uSn(x), uSℓn (x) pe nanotrâf no perturbade, lis
jentradis de matriç A a son Amn = 1

ρ20L
par m ̸= n e Ann = 3

2ρ20L
,

m,n = 1, ...,M + N . L’inviers di A al pues jessi determinât in forme
sierade. Si che duncje, il vetôr βββ al à la espression esplicite

βS
n = 2ρ20L


δλS

n − 2

2M + 2N + 1




N
k=1

δλS
k +

M
j=1

δλSℓ
j




 ,

βSℓ
m = 2ρ20L


δλSℓ

m − 2

2M + 2N + 1




N
k=1

δλS
k +

M
j=1

δλSℓ
j






n = 1, ..., N , m = 1, ...,M , e e ven determinade la variazion di masse di
prin ordin. Di file, al è pussibil doprâ une procedure iterative analighe
a chê mostrade inte sezion 3.3.1 par identificâ la variazion di masse su
dut l’interval [0, L]. Il criteri di arest (3.51) al scuen jessi inzornât par
includi un control ancje sul secont spetri.
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parsore indicâts a puartin a chescj coeficients: S = 4.36 · 10−9 Nm2,
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e la precision e miore al cressi di N . La definizion dai coeficients di-
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cjatadis intal câs assiâl. Par brevitât, si concentrar̀ın dome sui câs là
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une aprossimazion finide di ordin (N +M) di rϵ(x) su chest insiemi di
funzions, o sedi

rϵ(x) =
N

n=1

βS
nΦ

S
n(x) +

M
m=1

βSℓ
m ΦSℓ

m (x), (3.60)

dulà che
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dut l’interval [0, L]. Il criteri di arest (3.51) al scuen jessi inzornât par
includi un control ancje sul secont spetri.
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Figure 5: Ricostruzion des variazions di masse soreponudis discontinuis
tant che in (3.53) in [0, L]. Parametris: s

L = 0.35, c
L = 0.30, t = 0.20,

s1
L = 0.85, c1

L = 0.30, t1 = 0.80, cun N = M = 6, 9, 12, 15, 20, 25
autofrecuencis.

mitât libare de trâf a sbalç, e a son stadis calcoladis lis ŝıs configurazions
mostradis inte Figure 6. Come che si pues viodi te Tabele 1, che e
je stade dedusude de Tabele 1 in (Hanay et al., 2015), a son stadis
misuradis lis autofrecuencis dai prins cuatri mûts di vibrâ in flession pes
configurazions di riferiment (U) e perturbade (Pi), i = 1, . . . , 6.

Une serie selezionade di risultâts di identificazion e je mostrade te
Figure 7. I coeficients di masse ricostrûıts mostrâts intes Figuris 7(a,b)
a son stâts determinâts assumint a priori che il supuart de variazion di
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Figure 4: Ricostruzion des variazions di masse soreponudis discontinuis
tant che in (3.53) in [0, L]. Parametris: s

L = 0.35, c
L = 0.30, t = 0.10,

s1
L = 0.85, c1

L = 0.30, t1 = 0.10, cun N = M = 6 (a), N = M = 9 (b),
N = M = 12 (c), N = M = 15 (d).

chest articul par une descrizion complete dal esperiment. In curt, gotutis
di licuit a son stadis deponudis suntune nanotrâf a sbalç (o ben, fissade
dome a une estremitât) di Si monocristalin, di lungjece L = 397 µm e
sezion trasversâl retangolâr cun largjece b = 29 µm e altece h = 2 µm. O
vin un coeficient di Poisson ν = 0.2; une densitât di masse volumetriche
ρvol = 2330 kgm−3; e l0 = l1 = l2. Il modul di Young E dal materiâl e
il parametri di scjale l0 a son stâts stimâts cuntun confront cu lis primis
cuatri frecuencis di risonance misuradis {fU,exp

n }4n=1. O vin cjatât la
soluzion otimâl uniche Eopt = 175 GPa, lopt0 = 0.032h. La Tabele 1 e
mostre che lis variazions di frecuence indotis de masse zontade a son, in
medie, plui grancj dai erôrs di modelizazion valutâts su la configurazion
di riferiment. La esperience maduride dai autôrs su altris problemis
inviers ai autovalôrs basâts su dâts fin̂ıts (par esempli, la identificazion
dai dams in trâfs classichis in scjale reâl, che si viodi Morassi (2007)) e
sugjer̀ıs che cheste e je une cundizion essenziâl pal sucès de identificazion.

Lis seriis di gotutis a son stadis deponudis a cubiis, a part̂ı de estre-
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L = 0.30, t1 = 0.80, cun N = M = 6, 9, 12, 15, 20, 25
autofrecuencis.
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mostradis inte Figure 6. Come che si pues viodi te Tabele 1, che e
je stade dedusude de Tabele 1 in (Hanay et al., 2015), a son stadis
misuradis lis autofrecuencis dai prins cuatri mûts di vibrâ in flession pes
configurazions di riferiment (U) e perturbade (Pi), i = 1, . . . , 6.
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Figure 7. I coeficients di masse ricostrûıts mostrâts intes Figuris 7(a,b)
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Figure 4: Ricostruzion des variazions di masse soreponudis discontinuis
tant che in (3.53) in [0, L]. Parametris: s

L = 0.35, c
L = 0.30, t = 0.10,

s1
L = 0.85, c1

L = 0.30, t1 = 0.10, cun N = M = 6 (a), N = M = 9 (b),
N = M = 12 (c), N = M = 15 (d).

chest articul par une descrizion complete dal esperiment. In curt, gotutis
di licuit a son stadis deponudis suntune nanotrâf a sbalç (o ben, fissade
dome a une estremitât) di Si monocristalin, di lungjece L = 397 µm e
sezion trasversâl retangolâr cun largjece b = 29 µm e altece h = 2 µm. O
vin un coeficient di Poisson ν = 0.2; une densitât di masse volumetriche
ρvol = 2330 kgm−3; e l0 = l1 = l2. Il modul di Young E dal materiâl e
il parametri di scjale l0 a son stâts stimâts cuntun confront cu lis primis
cuatri frecuencis di risonance misuradis {fU,exp

n }4n=1. O vin cjatât la
soluzion otimâl uniche Eopt = 175 GPa, lopt0 = 0.032h. La Tabele 1 e
mostre che lis variazions di frecuence indotis de masse zontade a son, in
medie, plui grancj dai erôrs di modelizazion valutâts su la configurazion
di riferiment. La esperience maduride dai autôrs su altris problemis
inviers ai autovalôrs basâts su dâts fin̂ıts (par esempli, la identificazion
dai dams in trâfs classichis in scjale reâl, che si viodi Morassi (2007)) e
sugjer̀ıs che cheste e je une cundizion essenziâl pal sucès de identificazion.

Lis seriis di gotutis a son stadis deponudis a cubiis, a part̂ı de estre-

Problemis inviers par nanostruturis

59



0.8

0.9

1.0

1.1

1.2

0.00 0.25 0.50 0.75 1.00

 �
(x

) 
/ 
�

0

x / L

(a)

U
P1
P2
P6

0.8

0.9

1.0

1.1

1.2

0.00 0.25 0.50 0.75 1.00

 �
(x

) 
/ 
�

0

x / L

(b)

U
P3
P4
P5

0.8

0.9

1.0

1.1

1.2

0.00 0.25 0.50 0.75 1.00

 �
(x

) 
/ 
�

0

x / L

(c)

U
P1
P2
P6

0.8

0.9

1.0

1.1

1.2

0.00 0.25 0.50 0.75 1.00

 �
(x

) 
/ 
�

0

x / L

(d)

U
P3
P4
P5

Figure 7: Ricostruzion de masse pe trâf a sbalç mostrade inte Figure
6 doprant lis primis cuatri autofrecuencis sperimentâls e par diviersis
sieltis dal interval di identificazion. Rie superiôr: [0.5L,L]; rie inferiôr:
[0.7L,L].

prof̂ıl di masse ricostrûıt intal câs P6 al è simil a chel dal câs P2 in
[0.85L,L], e al mostre une altre incressite positive procedint bande il
centri de trâf a sbalç. Par completece, la ricostruzion e je stade fate
ridusint in maniere graduâl la dimension dal interval. Lis Figuris 7(c,d)
a mostrin il câs [0.7L,L], che in sostance al conferme i risultâts otignûts
lavorant su mieç interval. In conclusion, si note che la ricostruzion e je
risultade utile cundut dal numar limitât di autofrecuencis sperimentâls
disponibilis. I risultâts des simulazions numerichis disvilupadis intes
sezions di prime a sugjerissin che la precision de ricostruzion e miorarès
in maniere significative, ancje inte norme L∞, se al fos disponibil un
numar ancje di pôc plui grant di primis autofrecuencis (ŝıs-vot). Cun
di plui, i risultâts incoragjants otignûts in cheste prove sperimentâl e
somee che a sugjerissin che la teorie di prime, chê disvilupade pe iden-
tificazion in nanotrâfs supuartadis a lis dôs estremitâts, e podarès jessi
gjeneralizade ancje a cundizions aes estremitâts diviersis. Chest aspiet
al à, dut câs, di jessi investigât plui a fonts dal pont di viste teoric.

P2 P3 P4 P5 P6P1U

Figure 6: Campion sperimentâl: configurazions no perturbadis (U) e
perturbadis di masse (Pi, i = 1, . . . , 6) otignudis cun deposizion di seriis
di gotutis di licuit. Riproduzion elaborade di (Hanay et al., 2015).

Tabele 1: Valôrs sperimentâi des autofrecuencis de trâf a sbalç mostrade
te Figure 6. U=configurazion no perturbade; valôrs assolûts in Hz e
erôrs di modelizazion percentuâls U% = 100 · (fU,th

n − fU,exp
n )/fU,exp

n .
Pi= i-esime configurazion perturbade, i = 1, . . . , 6; variazions per-
centuâls de autofrecuence indotis de masse Pi% = 100 · (fU,exp

n −
fPi,exp
n )/fU,exp

n . fU,th
n =n-esime autofrecuence teoriche no perturbade;

fU,exp
n =n-esime autofrecuence sperimentâl no perturbade; fPi,exp

n =n-
esime autofrecuence sperimentâl de trâf a sbalç perturbade Pi. Dâts
sperimentâi gjavâts di (Hanay et al., 2015).

No perturbade Perturbade
n U U% P1% P2% P3% P4% P5% P6%

1 17883 0.31 0.59 1.14 1.53 2.18 2.67 1.36
2 112465 -0.04 0.49 0.77 0.87 0.94 0.94 0.74
3 315158 -0.12 0.41 0.53 0.54 0.58 0.75 0.60
4 617728 -0.15 0.33 0.36 0.38 0.67 1.07 0.60

masse discognossude e sedi de metât diestre de trâf a sbalç, par esempli
il sot interval (0.5L,L). La funzion di densitât ricostruide e mostre in
maniere corete grandis incressitis positivis dentri dal ultin cuart de trâf
a sbalç. Il massim de variazion di masse al cres pai câs di P1 a P5,
come si spietavisi, e il supuart de variazion di masse positive si slargje
ancje de estremitât libare bande l’interni. Al è interessant notâ che il
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Figure 7: Ricostruzion de masse pe trâf a sbalç mostrade inte Figure
6 doprant lis primis cuatri autofrecuencis sperimentâls e par diviersis
sieltis dal interval di identificazion. Rie superiôr: [0.5L,L]; rie inferiôr:
[0.7L,L].

prof̂ıl di masse ricostrûıt intal câs P6 al è simil a chel dal câs P2 in
[0.85L,L], e al mostre une altre incressite positive procedint bande il
centri de trâf a sbalç. Par completece, la ricostruzion e je stade fate
ridusint in maniere graduâl la dimension dal interval. Lis Figuris 7(c,d)
a mostrin il câs [0.7L,L], che in sostance al conferme i risultâts otignûts
lavorant su mieç interval. In conclusion, si note che la ricostruzion e je
risultade utile cundut dal numar limitât di autofrecuencis sperimentâls
disponibilis. I risultâts des simulazions numerichis disvilupadis intes
sezions di prime a sugjerissin che la precision de ricostruzion e miorarès
in maniere significative, ancje inte norme L∞, se al fos disponibil un
numar ancje di pôc plui grant di primis autofrecuencis (ŝıs-vot). Cun
di plui, i risultâts incoragjants otignûts in cheste prove sperimentâl e
somee che a sugjerissin che la teorie di prime, chê disvilupade pe iden-
tificazion in nanotrâfs supuartadis a lis dôs estremitâts, e podarès jessi
gjeneralizade ancje a cundizions aes estremitâts diviersis. Chest aspiet
al à, dut câs, di jessi investigât plui a fonts dal pont di viste teoric.
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Figure 6: Campion sperimentâl: configurazions no perturbadis (U) e
perturbadis di masse (Pi, i = 1, . . . , 6) otignudis cun deposizion di seriis
di gotutis di licuit. Riproduzion elaborade di (Hanay et al., 2015).

Tabele 1: Valôrs sperimentâi des autofrecuencis de trâf a sbalç mostrade
te Figure 6. U=configurazion no perturbade; valôrs assolûts in Hz e
erôrs di modelizazion percentuâls U% = 100 · (fU,th

n − fU,exp
n )/fU,exp

n .
Pi= i-esime configurazion perturbade, i = 1, . . . , 6; variazions per-
centuâls de autofrecuence indotis de masse Pi% = 100 · (fU,exp

n −
fPi,exp
n )/fU,exp

n . fU,th
n =n-esime autofrecuence teoriche no perturbade;

fU,exp
n =n-esime autofrecuence sperimentâl no perturbade; fPi,exp

n =n-
esime autofrecuence sperimentâl de trâf a sbalç perturbade Pi. Dâts
sperimentâi gjavâts di (Hanay et al., 2015).

No perturbade Perturbade
n U U% P1% P2% P3% P4% P5% P6%

1 17883 0.31 0.59 1.14 1.53 2.18 2.67 1.36
2 112465 -0.04 0.49 0.77 0.87 0.94 0.94 0.74
3 315158 -0.12 0.41 0.53 0.54 0.58 0.75 0.60
4 617728 -0.15 0.33 0.36 0.38 0.67 1.07 0.60

masse discognossude e sedi de metât diestre de trâf a sbalç, par esempli
il sot interval (0.5L,L). La funzion di densitât ricostruide e mostre in
maniere corete grandis incressitis positivis dentri dal ultin cuart de trâf
a sbalç. Il massim de variazion di masse al cres pai câs di P1 a P5,
come si spietavisi, e il supuart de variazion di masse positive si slargje
ancje de estremitât libare bande l’interni. Al è interessant notâ che il
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4.2 Un prototip: stimis di grandece inte condutivitât. In cheste sezion
o aǹın daûr dal tratament presentât inte sezion introdutive di Alessan-
drini et al. (2003) (paragrafs 1.1-1.3).

Premet̀ın cualchi notazion essenziâl. Dât un insiemi viert e limitât
U ⊂ Rn e un numar int̂ır m, m ≥ 1, o indich̀ın cun Hm(U) il solit
spazi di Sobolev des funzions misurabilis di Lebesgue f : U → R cun
derivade debile Dαf di cuadrât sumabil fin al ordin m, par esempli,
Hm(U) = {f : U → R|


U |f |2 +

m
|α|=1 |Dαf |2 < +∞}, dulà che

α = (α1, ..., αn), αi ≥ 0 numar int̂ır, |α| = α1 + ... + αn, Di = ∂
∂xi

,

Dα = Dα1
1 ...Dαn

n . O indich̀ın cun H−m(U) il spazi duâl di Hm(U).

4.2.1 Il probleme inviers

Cjap̀ın in considerazion un condutôr eletric cun condutivitât uniforme
σ ≡ 1 che al ocupe un insiemi viert limitât Ω ⊂ Rn, cun frontiere di
Lipschitz. Supoǹın che une inclusion discognossude Ω, Ω ⊂⊂ Ω, cun
condutivitât σ ≡ 2, e sedi contignude, in câs, in Ω. Dade une densitât
di corint φ no identichementri nule sul contor ∂Ω, cun φ ∈ H− 1

2 (∂Ω) e
∂Ω φ = 0, il probleme diret di condutivitât al consist intal determinâ
la tension u = u(x), u ∈ H1(Ω), soluzion (a mancul di une costante
aditive) dal probleme di Neumann




div ((1 + χ
Ω̃
)∇u) = 0, in Ω,

∇u · ν = φ, su ∂Ω,
(4.1)

dulà che χ
Ω̃
e je la funzion carateristiche dal insiemi Ω e ν e denote la

normâl unitarie esterne a ∂Ω.
Un probleme inviers che si presente in tancj cjamps de sience aplicade

e de tecnologjie al è chel che al ven clamât probleme di condutivitât
invierse cuntune misurazion. Al consist intal determinâ Ω cognossint la
densitât di corint φ che e agj̀ıs sul contor ∂Ω e la corispondente tension
u|∂Ω misurade su ∂Ω. Cundut de semplicitât de sô formulazion, ancje
la cuistion de unicitât di chest probleme inviers e reste un probleme
cence soluzion e impegnat̂ıf pe inclusion gjenerâl; si rimande, tra altris
contribûts, a Isakov (1998) par une rassegne. La unicitât e je garantide
cuant che dutis lis misurazions al contor a puedin jessi fatis, o ben cuant
la mape complete di Neumann-Dirichlet N

Ω̃
: φ ∈ H−1/2(∂Ω) → u|∂Ω ∈

4. Identificazion di inclusions in nanoplachis

4.1 Introduzion. Lis nanoplachis a son i components fondamentâi dai
MEMS e dai NEMS e il lôr funzionament coret al è une carateristiche
essenziâl par chescj disposit̂ıfs. La domande di prestazions plui elevadis
e dimensions limitadis (dimensions tipichis intor a 1÷ 10× 10−4 metris,
o ancje mancul) e pues puartâ a stâts di deformazion/solecitazion plui
alts e cundizions operativis une vore impegnativis che a puedin cressi
la probabilitât di vuascj struturâi. Cun di plui, dilunc dal procès di
produzion a puedin compar̂ı difiets tant che crevaduris, vueits internis,
mancjance di omogjeneitât tal materiâl e fenomens di abrasion, che a
puedin evolvisi dilunc de vite des nanoplachis, puartant ae ativazion di
vuascj mecanics dal disposit̂ıf (Chen et al., 2017; Jalalahmadi et al.,
2009; Yuan et al., 2020). Par chescj mot̂ıfs, tai ultins timps al è cressût
l’interès pal disvilup di tecnichis diagnostichis par valutâ la presince di
difiets intes nanoplachis, vierzint cuss̀ı la strade ae estension dai metodis
fin cumò elaborâts pe valutazion di sistemis mecanics su largje scjale
ancje aes dimensions nanometrichis. Par esempli, in Alessandrini et al.
(2024) al è stât cjapât in considerazion il probleme inviers di determinâ
il coeficient di Winkler intune nanoplache poiade suntune fondazion ela-
stiche, e une stime globâl de stabilitât di Hölder dal coeficient dal sotfont
e je stade dimostrade fasint une misurazion interne singule de deflession
trasversâl de nanoplache indote di une cjame concentrade intun pont.

In cheste ultime part di cheste rassegne, o studìın il probleme di
determinâ, dentri di une nanoplache elastiche isotrope in flession, la
presince di un difiet modelât tant che une inclusion costituide di materiâl
elastic diviers. Sot ipotesis oportunis a priori su la inclusion discognos-
sude, o furǹın stimis cuantitativis dal alt e dal bas de aree de inclusion
tai tiermins dal lavôr disvilupât dai dâts al contor cuant che la inclusion
e je e cuant che, invezit, no je (Morassi et al., 2023b).

Par semplificâ la esposizion, inte prossime sezion o introdus̀ın lis
ideis principâls e i struments matematics intal contest plui sempliç de
condutivitât, là che la impostazion des stimis des dimensions e je stade
disvilupade in origjin di Alessandrini e Rosset (1998), Alessandrini et al.
(2000). Daspò, o passar̀ın a frontâ il probleme des stimis dimensionâls
pes nanoplachis.
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4.2 Un prototip: stimis di grandece inte condutivitât. In cheste sezion
o aǹın daûr dal tratament presentât inte sezion introdutive di Alessan-
drini et al. (2003) (paragrafs 1.1-1.3).
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
U |f |2 +

m
|α|=1 |Dαf |2 < +∞}, dulà che

α = (α1, ..., αn), αi ≥ 0 numar int̂ır, |α| = α1 + ... + αn, Di = ∂
∂xi

,

Dα = Dα1
1 ...Dαn
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


div ((1 + χ
Ω̃
)∇u) = 0, in Ω,

∇u · ν = φ, su ∂Ω,
(4.1)
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Ω̃
e je la funzion carateristiche dal insiemi Ω e ν e denote la
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Un probleme inviers che si presente in tancj cjamps de sience aplicade
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Ω̃
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e je stade dimostrade fasint une misurazion interne singule de deflession
trasversâl de nanoplache indote di une cjame concentrade intun pont.

In cheste ultime part di cheste rassegne, o studìın il probleme di
determinâ, dentri di une nanoplache elastiche isotrope in flession, la
presince di un difiet modelât tant che une inclusion costituide di materiâl
elastic diviers. Sot ipotesis oportunis a priori su la inclusion discognos-
sude, o furǹın stimis cuantitativis dal alt e dal bas de aree de inclusion
tai tiermins dal lavôr disvilupât dai dâts al contor cuant che la inclusion
e je e cuant che, invezit, no je (Morassi et al., 2023b).

Par semplificâ la esposizion, inte prossime sezion o introdus̀ın lis
ideis principâls e i struments matematics intal contest plui sempliç de
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(4.2). La funzion u0 e je la soluzion al probleme minim

F0(u0) = min
v∈H1(Ω)

F0(v), F0(v) =

∫

Ω
∇v · ∇v − 2

∫

∂Ω
vφ

e e sodisfe
∫

Ω
∇u0 · ∇v =

∫

∂Ω
φv, par ogni v ∈ H1(Ω).

Istessementri, la funzion u e je cuss̀ı che

F
Ω̃
(u) = min

v∈H1(Ω)
F
Ω̃
(v), F

Ω̃
(v) =

∫

Ω
(1 + χ

Ω̃
)∇v · ∇v − 2

∫

∂Ω
vφ

e ∫

Ω
(1 + χ

Ω̃
)∇u · ∇v =

∫

∂Ω
φv, par ogni v ∈ H1(Ω).

Si che duncje, o vin

−W0 = F0(u0) ≤ F0(u) = F
Ω̃
(u)−

∫

Ω̃
|∇u|2 = −W −

∫

Ω̃
|∇u|2,

vâl a d̂ı

−W0 ≤ −W −
∫

Ω̃
|∇u|2.

Doprant une procedure simile, cheste volte partint di u, o cjat̀ın

−W ≤ −W0 +

∫

Ω̃
|∇u0|2

e des ultimis dôs disavualancis o otigǹın

∫

Ω̃
|∇u|2 ≤ W0 −W ≤

∫

Ω̃
|∇u0|2. (4.4)

Chest al dimostre che se |Ω̃| > 0 e φ ̸≡ 0, alore W0 −W > 0, o sedi che
la diference di potence W0−W e je in efiets sensibile a Ω̃. Di fat, se nol
fos cuss̀ı, o varessin ∇u = 0 in Ω̃ e, pe formulazion debile,

∫

Ω
∇u · ∇v =

∫

Ω
(1 + χ

Ω̃
)∇u · ∇v =

∫

∂Ω
φv, par ogni v ∈ H1(Ω) ,

H1/2(Ω) e je cognossude e a vegnin formuladis ipotesis adeguadis su la
topologjie e su la regolaritât de inclusion Ω. Chest al è un risultât celebri
di Isakov (1988). A ogni mût, Di Cristo e Rondi (2003) a àn dimostrât
che, ancje cuant che e je disponibile la mape complete di Neumann-
Dirichlet, il probleme inviers al è seriementri malponût e la stabilitât
de mape N

Ω̃
→ Ω no pues jessi miôr che logaritmiche. Di consecuence,

in pratiche, al è impussibil aplicâ tecnichis di ricostruzion de inclusion
discognossude di dâts di contor cun erôrs.

Tignint cont di chescj aspiets, al è resonevul limitâ l’obiet̂ıf dal pro-
bleme inviers dome cuntune misure di contor e provâ di stimâ cierts
parametris che a esprimin la dimension, par esempli la aree o il volum,
de inclusion, trascurant la sô posizion e forme precisis. L’obiet̂ıf de
impostazion basade su lis stimis di grandece e je la definizion di stimis
cuantitativis dal alt e dal bas de misure di Lebesgue |Ω| de inclusion in
tiermins di misurazions al contor.

4.2.2 La idee principâl

O descriv̀ın ach̀ı la idee principâl dal metodi. Come te plui part des
tecnichis diagnostichis, al è ben disponi di une configurazion di riferi-
ment dal probleme pal confront. Indich̀ın cun u0 ∈ H1(Ω) il potenziâl
corispondent ae stesse corint di contor φ cuant che la inclusion e je
assente: 


∆u0 = 0, in Ω,

∇u0 · ν = φ, on ∂Ω.
(4.2)

Segǹın cun W , W0 lis potencis necessariis par mantign̂ı la densitât di
corint dade φ su ∂Ω cuant che Ω e je, rispetivementri, presinte o assente:

W =



∂Ω
uφ, W0 =



∂Ω
u0φ. (4.3)

La potence di riferiment W0 e pues jessi considerade come cuantitât
dade, stant che o pod̀ın meti che la soluzion di (4.2) e sedi cognossude.

La ipotesi di fonde e je che la diference di potence |W −W0| e varès
di jessi sensibile ae inclusion Ω. Par verificâlu, o pod̀ın doprâ un reso-
nament sempliç basât su la formulazion variazionâl dai problemis (4.1),
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(4.2). La funzion u0 e je la soluzion al probleme minim

F0(u0) = min
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∇v · ∇v − 2

∫

∂Ω
vφ

e e sodisfe
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∇u0 · ∇v =

∫

∂Ω
φv, par ogni v ∈ H1(Ω).

Istessementri, la funzion u e je cuss̀ı che

F
Ω̃
(u) = min

v∈H1(Ω)
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Ω̃
(v), F

Ω̃
(v) =
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(1 + χ

Ω̃
)∇v · ∇v − 2

∫

∂Ω
vφ

e ∫

Ω
(1 + χ

Ω̃
)∇u · ∇v =

∫

∂Ω
φv, par ogni v ∈ H1(Ω).

Si che duncje, o vin

−W0 = F0(u0) ≤ F0(u) = F
Ω̃
(u)−

∫

Ω̃
|∇u|2 = −W −

∫

Ω̃
|∇u|2,

vâl a d̂ı

−W0 ≤ −W −
∫

Ω̃
|∇u|2.

Doprant une procedure simile, cheste volte partint di u, o cjat̀ın

−W ≤ −W0 +

∫

Ω̃
|∇u0|2

e des ultimis dôs disavualancis o otigǹın

∫

Ω̃
|∇u|2 ≤ W0 −W ≤

∫

Ω̃
|∇u0|2. (4.4)

Chest al dimostre che se |Ω̃| > 0 e φ ̸≡ 0, alore W0 −W > 0, o sedi che
la diference di potence W0−W e je in efiets sensibile a Ω̃. Di fat, se nol
fos cuss̀ı, o varessin ∇u = 0 in Ω̃ e, pe formulazion debile,

∫

Ω
∇u · ∇v =

∫

Ω
(1 + χ

Ω̃
)∇u · ∇v =

∫

∂Ω
φv, par ogni v ∈ H1(Ω) ,

H1/2(Ω) e je cognossude e a vegnin formuladis ipotesis adeguadis su la
topologjie e su la regolaritât de inclusion Ω. Chest al è un risultât celebri
di Isakov (1988). A ogni mût, Di Cristo e Rondi (2003) a àn dimostrât
che, ancje cuant che e je disponibile la mape complete di Neumann-
Dirichlet, il probleme inviers al è seriementri malponût e la stabilitât
de mape N

Ω̃
→ Ω no pues jessi miôr che logaritmiche. Di consecuence,

in pratiche, al è impussibil aplicâ tecnichis di ricostruzion de inclusion
discognossude di dâts di contor cun erôrs.

Tignint cont di chescj aspiets, al è resonevul limitâ l’obiet̂ıf dal pro-
bleme inviers dome cuntune misure di contor e provâ di stimâ cierts
parametris che a esprimin la dimension, par esempli la aree o il volum,
de inclusion, trascurant la sô posizion e forme precisis. L’obiet̂ıf de
impostazion basade su lis stimis di grandece e je la definizion di stimis
cuantitativis dal alt e dal bas de misure di Lebesgue |Ω| de inclusion in
tiermins di misurazions al contor.

4.2.2 La idee principâl

O descriv̀ın ach̀ı la idee principâl dal metodi. Come te plui part des
tecnichis diagnostichis, al è ben disponi di une configurazion di riferi-
ment dal probleme pal confront. Indich̀ın cun u0 ∈ H1(Ω) il potenziâl
corispondent ae stesse corint di contor φ cuant che la inclusion e je
assente: 


∆u0 = 0, in Ω,

∇u0 · ν = φ, on ∂Ω.
(4.2)

Segǹın cun W , W0 lis potencis necessariis par mantign̂ı la densitât di
corint dade φ su ∂Ω cuant che Ω e je, rispetivementri, presinte o assente:

W =



∂Ω
uφ, W0 =



∂Ω
u0φ. (4.3)

La potence di riferiment W0 e pues jessi considerade come cuantitât
dade, stant che o pod̀ın meti che la soluzion di (4.2) e sedi cognossude.

La ipotesi di fonde e je che la diference di potence |W −W0| e varès
di jessi sensibile ae inclusion Ω. Par verificâlu, o pod̀ın doprâ un reso-
nament sempliç basât su la formulazion variazionâl dai problemis (4.1),
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4.2.3 Continuazion uniche

I imprescj principâi par controlâ il tas di anulament di |∇u0|2 intai ponts
internis di Ω a son stimis cuantitativis adatis de continuazion uniche sot
forme de disavualance des trê sferis (Landis, 1963) e de disavualance
di dopleament (Garofalo e Lin, 1986) pes soluzions dal probleme no
perturbât (4.2). Introdus̀ınlis in tiermins locâi.

Par ogni r̄ > 0 segǹın Ωr̄ = {x ∈ Ω| dist(x, ∂Ω) > r̄}.
E sedi u0 ∈ H1(Ω) une soluzion di ∆u0 = 0 in Ω. La disavualance

des trê sferis e compuarte che par ogni r1, r2, r3, r̄, 0 < r1 < r2 < r3 ≤ r̄,
e par ogni x0 ∈ Ωr̄

∫

Br2 (x0)
|∇u0|2 ≤ C

(∫

Br1 (x0)
|∇u0|2

)δ (∫

Br3 (x0)
|∇u0|2

)1−δ

, (4.9)

dulà che C > 0 e δ, 0 < δ < 1, a dipendin dome di r1
r3

e r2
r3
. Par une

funzion u0 cjapade tant che parsore, la disavualance di dopleament e
aferme che par ogni r, 0 < 4r ≤ r̄ e par ogni x0 ∈ Ωr̄

∫

B2r(x0)
|∇u0|2 ≤ C

∫

Br(x0)
|∇u0|2, (4.10)

dulà che C > 0 e je une costante adeguade che e dipent di u0 ma no di r.
Cumbinant chestis proprietâts di continuazion uniche locâl cuntune altre
formulazion de proprietât di continuazion uniche clamade propagazion
Lipschitz de piçulece , al è pussibil dimostrâ che se i dâts al contor φ no
ossilin masse, alore il tas di anulament di |∇u0|2 dentri di Ω nol pues
jessi elevât. Plui di preĉıs, si oten che se il cuozient clamât frecuence di
φ

F [φ] =
∥φ∥

H− 1
2 (∂Ω)

∥φ∥H−1(∂Ω)
, (4.11)

al è limitât a priori, alore par ogni sotinsiemi compat K di Ω al esist

p > 1 cuss̀ı che |∇u0|−
2

p−1 si pues integrâ su K. Si che duncje, si oten
un limit superiôr su |Ω̃| tant che

|Ω̃| ≤ C+
2

(
W0 −W

W0

) 1
p

, (4.12)

dulà che p al dipent de frecuence F [φ].

che al impliche che u e je une soluzion di (4.2). Di consecuence, u =
u0 + costante. e ∇u0 = 0 in Ω̃. Stant che |Ω̃| > 0, chest al impliche, pe
proprietât di continuazion uniche des funzions armonichis, che ∇u0 = 0
in Ω, chel che al pues jessi dome se φ ≡ 0, une contradizion.

Al è pussibil doprâ il limit superiôr in (4.4) par otign̂ı une stime
cuantitative dal bas a |Ω̃|. Se o supoǹın a priori

dist(Ω̃, ∂Ω) ≥ d0 > 0, (4.5)

alore, pes stimis di regolaritât interne,

sup
Ω̃

|∇u0|2 ≤ C+
1 W0 (4.6)

e, in ultin,

|Ω̃| ≥ C+
1

W0 −W

W0
. (4.7)

La definizion di une stime superiôr par |Ω̃| e je mancul semplice. Un
prin ostacul al è rapresentât de presince de soluzion perturbade (4.4),
che e dipent ancje de inclusion discognossude Ω̃. Cheste dificoltât e pues
jessi superade doprant un resonament inzegnôs di Kang et al. (1997) che
al disfrute la struture cuadratiche dai integrâi di energjie e al permet di
sostitûı u cun u0 cuntun fatôr 1/2:

1

2

∫

Ω̃
|∇u0|2 ≤ W0 −W ≤

∫

Ω̃
|∇u0|2. (4.8)

Po dopo, la stime dal bas di |∇u0|2 e je dificile, se no impussibile, stant
che ∇u0 e pues deventâ nule dentri di Ω. Un mût naturâl par evitâ chest
probleme al è sielzi la densitât di corint φ al contor in mût che il gradient
nol sparissi, par esempli φ = e · ν su ∂Ω, che al impliche ∇u0 ≡ e, dulà
che e al è un vetôr unitari in Rn. In ogni câs, cheste sielte e podarès no
jessi aplicabile cun facilitât inte pratiche. Cun di plui, la presince di une
condutivitât no dal dut uniforme dal cuarp e domande une impostazion
plui gjenerâl dal probleme. Par chescj mot̂ıfs, un dai temis principâi ae
base de impostazion des stimis dimensionâls e je la stime cuantitative
dal tas di anulament di |∇u0|2 intai ponts internis di Ω. Chest aspiet
al è delineât inte sezion sucessive e al sarà aprofond̂ıt pal probleme des
nanoplachis inte sezion 4.6.
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Lipschitz de piçulece , al è pussibil dimostrâ che se i dâts al contor φ no
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jessi elevât. Plui di preĉıs, si oten che se il cuozient clamât frecuence di
φ

F [φ] =
∥φ∥

H− 1
2 (∂Ω)

∥φ∥H−1(∂Ω)
, (4.11)

al è limitât a priori, alore par ogni sotinsiemi compat K di Ω al esist

p > 1 cuss̀ı che |∇u0|−
2

p−1 si pues integrâ su K. Si che duncje, si oten
un limit superiôr su |Ω̃| tant che

|Ω̃| ≤ C+
2

(
W0 −W

W0

) 1
p

, (4.12)

dulà che p al dipent de frecuence F [φ].

che al impliche che u e je une soluzion di (4.2). Di consecuence, u =
u0 + costante. e ∇u0 = 0 in Ω̃. Stant che |Ω̃| > 0, chest al impliche, pe
proprietât di continuazion uniche des funzions armonichis, che ∇u0 = 0
in Ω, chel che al pues jessi dome se φ ≡ 0, une contradizion.

Al è pussibil doprâ il limit superiôr in (4.4) par otign̂ı une stime
cuantitative dal bas a |Ω̃|. Se o supoǹın a priori

dist(Ω̃, ∂Ω) ≥ d0 > 0, (4.5)

alore, pes stimis di regolaritât interne,

sup
Ω̃

|∇u0|2 ≤ C+
1 W0 (4.6)

e, in ultin,

|Ω̃| ≥ C+
1

W0 −W

W0
. (4.7)

La definizion di une stime superiôr par |Ω̃| e je mancul semplice. Un
prin ostacul al è rapresentât de presince de soluzion perturbade (4.4),
che e dipent ancje de inclusion discognossude Ω̃. Cheste dificoltât e pues
jessi superade doprant un resonament inzegnôs di Kang et al. (1997) che
al disfrute la struture cuadratiche dai integrâi di energjie e al permet di
sostitûı u cun u0 cuntun fatôr 1/2:

1

2

∫

Ω̃
|∇u0|2 ≤ W0 −W ≤

∫

Ω̃
|∇u0|2. (4.8)

Po dopo, la stime dal bas di |∇u0|2 e je dificile, se no impussibile, stant
che ∇u0 e pues deventâ nule dentri di Ω. Un mût naturâl par evitâ chest
probleme al è sielzi la densitât di corint φ al contor in mût che il gradient
nol sparissi, par esempli φ = e · ν su ∂Ω, che al impliche ∇u0 ≡ e, dulà
che e al è un vetôr unitari in Rn. In ogni câs, cheste sielte e podarès no
jessi aplicabile cun facilitât inte pratiche. Cun di plui, la presince di une
condutivitât no dal dut uniforme dal cuarp e domande une impostazion
plui gjenerâl dal probleme. Par chescj mot̂ıfs, un dai temis principâi ae
base de impostazion des stimis dimensionâls e je la stime cuantitative
dal tas di anulament di |∇u0|2 intai ponts internis di Ω. Chest aspiet
al è delineât inte sezion sucessive e al sarà aprofond̂ıt pal probleme des
nanoplachis inte sezion 4.6.
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par parts, il pont principâl al consist intal esprimi lis derivadis secondis
de funzion di prove w,αβ su ∂Ω in tiermins des derivadis normâls e de
lungjece dal arc di w su ∂Ω. Chest al è sclar̂ıt in chest leme.

Leme 4.1. Al sedi Ω un domini limitât in R2 di classe C2 e al sedi
w ∈ H3(Ω). Chestis formulis di cambi di variabilis a valin su ∂Ω:

w,αβ = w,ss τατβ + w,nn nαnβ + w,sn (ταnβ + τβnα) +

+w,s (τβτα,s−nβnα,s ) + w,n τβnα,s , c.d. su ∂Ω.

O domand̀ın chestis cundizions di regolaritât sui dâts di contor V̂
(fuarce di tai), M̂n (moment fletint) e M̂h

n (moment fletint di ordin
superiôr) che a comparissin intes ecuazions di ecuilibri al contor (4.15)–
(4.17):

V̂ ∈ H−5/2(∂Ω), M̂n ∈ H−3/2(∂Ω), M̂h
n ∈ H−1/2(∂Ω). (4.18)

Cun di plui, o assumı̀n lis cundizions di compatibilitât
∫

∂Ω
V̂ = 0,

∫

∂Ω
V̂ x1 + M̂nn1 = 0,

∫

∂Ω
V̂ x2 + M̂nn2 = 0. (4.19)

Par comoditât dal letôr, o riclamı̀n che lis funzions Mαβ = Mαβ(u),

M
h
αβγ = M

h
αβγ(u), α, β, γ = 1, 2, in (4.14)–(4.17) a son, rispetivementri,

lis componentis Cartesianis dal tensôr M = (Mαβ) e dal tensôr di ordin

superiôr M
h

= (M
h
αβγ), che a corispuindin al spostament trasversâl

u(x1, x2), u : Ω → R, dal pont (x1, x2) = x che al fâs part dal plan
median de nanoplache. Par semplificâ la presentazion, la dipendence di
chestis cuantitâts di u no je segnade in maniere esplicite in (4.14)–(4.17)
e in chel che al segùıs.

Indich̀ın cun M̂k il sot spazi dal spazi di Banach Mk dai tensôrs di
k-esim ordin, k = 2, 3, che a àn components invariants a pet di dutis lis
permutazions dai indiçs (ven a stâ tensôrs simetrics dal dut). Il spazi
dai operadôrs lineârs limitâts tra i spazis di Banach X e Y al è L(X,Y ).

O assumı̀n che lis funzions Mαβ a puedin jessi esprimudis tant che

Mαβ = −(Pαβγδ + P h
αβγδ)u,γδ (M = −(P+ Ph)D2u)), (4.20)

dulà che i tensôrs di cuart ordin P = P(x) ∈ L∞(Ω,L(M̂2, M̂2)), Ph =
Ph(x) ∈ L∞(Ω,L(M̂2, M̂2)) a sodisfin lis cundizions di simetrie

PA ·B = PB ·A, c.d. in Ω, (4.21)

O specifich̀ın in maniere esplicite che lis stimis che o vin viodût par-
sore si aplichin a insiemis Ω̃ misurabii in maniere arbitrarie cence re-
strizions topologjichis su la forme e nancje cundizions di regolaritât sul
contor. La uniche ipotesi e je la (4.5).

Dopo cheste part introdutive, te prossime sezion o cjapar̀ın in con-
siderazion il probleme inviers des stimis di grandece par une nanoplache.

4.3 Il probleme diret di Neumann par une nanoplache. Consider̀ın une
nanoplache Ω ×

(
− t

2 ,
t
2

)
cun plan median Ω rapresentât di un domini

limitât di R2 e che e à altece costante t, t << diam(Ω). O assumı̀n che
il contor ∂Ω di Ω al sedi di classe C2,1 cun costantis r0, M0 e che

|Ω| ≤ M1r
2
0, (4.13)

dulà cheM1 e je une costante positive. O consider̀ın posit̂ıf l’orientament
dal contor ∂Ω indot de normâl unitarie esterne n intal sens seguit̂ıf. Par
ogni pont P ∈ ∂Ω, al sedi τττ = (τ1, τ2) = τττ(P ) il vetôr tangjente unitari
al contor in P otignût tant che τττ = e3 × n.

Adatant i argoments presentâts inte sezion 2.4, il probleme di ecuilibri
static par une nanoplache di Kirchhoff-Love cjariade al contor e cence
fuarcis di volum al è descrit di chest probleme al contor di Neumann
(Morassi et al., 2023a, 2024):

(Mαβ +M
h
αβγ,γ),αβ = 0, in Ω, (4.14)

(Mαβ +M
h
αβγ,γ),αnβ + ((Mαβ +M

h
αβγ,γ)nατβ),s + (M

h
αβγτατβnγ),ss−

− (M
h
αβγnγ(τα,sτβ − nα,snβ)),s = −V̂ , su ∂Ω,

(4.15)

(Mαβ +M
h
αβγ,γ)nαnβ + (M

h
αβγnγ(ταnβ + τβnα)),s−

−M
h
αβγnγ(nα,sτβ) = M̂n, su ∂Ω,

(4.16)

M
h
αβγnαnβnγ = −M̂h

n , su ∂Ω. (4.17)

Si osserve che la procedure doprade par otign̂ı la formulazion fuarte dal
probleme di ecuilibri de formulazion debile (2.51) e je une formulazion
standard, ma e domande une cierte cautele par tign̂ı cont de variazion
de base locâl (n, τττ) in presince di contors arcâts, un aspiet trascurât
dispès in leterature (Morassi et al., 2023a, 2024). Dopo la integrazion
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par parts, il pont principâl al consist intal esprimi lis derivadis secondis
de funzion di prove w,αβ su ∂Ω in tiermins des derivadis normâls e de
lungjece dal arc di w su ∂Ω. Chest al è sclar̂ıt in chest leme.

Leme 4.1. Al sedi Ω un domini limitât in R2 di classe C2 e al sedi
w ∈ H3(Ω). Chestis formulis di cambi di variabilis a valin su ∂Ω:

w,αβ = w,ss τατβ + w,nn nαnβ + w,sn (ταnβ + τβnα) +

+w,s (τβτα,s−nβnα,s ) + w,n τβnα,s , c.d. su ∂Ω.

O domand̀ın chestis cundizions di regolaritât sui dâts di contor V̂
(fuarce di tai), M̂n (moment fletint) e M̂h

n (moment fletint di ordin
superiôr) che a comparissin intes ecuazions di ecuilibri al contor (4.15)–
(4.17):

V̂ ∈ H−5/2(∂Ω), M̂n ∈ H−3/2(∂Ω), M̂h
n ∈ H−1/2(∂Ω). (4.18)

Cun di plui, o assumı̀n lis cundizions di compatibilitât
∫

∂Ω
V̂ = 0,

∫

∂Ω
V̂ x1 + M̂nn1 = 0,

∫

∂Ω
V̂ x2 + M̂nn2 = 0. (4.19)

Par comoditât dal letôr, o riclamı̀n che lis funzions Mαβ = Mαβ(u),

M
h
αβγ = M

h
αβγ(u), α, β, γ = 1, 2, in (4.14)–(4.17) a son, rispetivementri,

lis componentis Cartesianis dal tensôr M = (Mαβ) e dal tensôr di ordin

superiôr M
h

= (M
h
αβγ), che a corispuindin al spostament trasversâl

u(x1, x2), u : Ω → R, dal pont (x1, x2) = x che al fâs part dal plan
median de nanoplache. Par semplificâ la presentazion, la dipendence di
chestis cuantitâts di u no je segnade in maniere esplicite in (4.14)–(4.17)
e in chel che al segùıs.

Indich̀ın cun M̂k il sot spazi dal spazi di Banach Mk dai tensôrs di
k-esim ordin, k = 2, 3, che a àn components invariants a pet di dutis lis
permutazions dai indiçs (ven a stâ tensôrs simetrics dal dut). Il spazi
dai operadôrs lineârs limitâts tra i spazis di Banach X e Y al è L(X,Y ).

O assumı̀n che lis funzions Mαβ a puedin jessi esprimudis tant che

Mαβ = −(Pαβγδ + P h
αβγδ)u,γδ (M = −(P+ Ph)D2u)), (4.20)

dulà che i tensôrs di cuart ordin P = P(x) ∈ L∞(Ω,L(M̂2, M̂2)), Ph =
Ph(x) ∈ L∞(Ω,L(M̂2, M̂2)) a sodisfin lis cundizions di simetrie

PA ·B = PB ·A, c.d. in Ω, (4.21)

O specifich̀ın in maniere esplicite che lis stimis che o vin viodût par-
sore si aplichin a insiemis Ω̃ misurabii in maniere arbitrarie cence re-
strizions topologjichis su la forme e nancje cundizions di regolaritât sul
contor. La uniche ipotesi e je la (4.5).

Dopo cheste part introdutive, te prossime sezion o cjapar̀ın in con-
siderazion il probleme inviers des stimis di grandece par une nanoplache.

4.3 Il probleme diret di Neumann par une nanoplache. Consider̀ın une
nanoplache Ω ×

(
− t

2 ,
t
2

)
cun plan median Ω rapresentât di un domini

limitât di R2 e che e à altece costante t, t << diam(Ω). O assumı̀n che
il contor ∂Ω di Ω al sedi di classe C2,1 cun costantis r0, M0 e che

|Ω| ≤ M1r
2
0, (4.13)

dulà cheM1 e je une costante positive. O consider̀ın posit̂ıf l’orientament
dal contor ∂Ω indot de normâl unitarie esterne n intal sens seguit̂ıf. Par
ogni pont P ∈ ∂Ω, al sedi τττ = (τ1, τ2) = τττ(P ) il vetôr tangjente unitari
al contor in P otignût tant che τττ = e3 × n.

Adatant i argoments presentâts inte sezion 2.4, il probleme di ecuilibri
static par une nanoplache di Kirchhoff-Love cjariade al contor e cence
fuarcis di volum al è descrit di chest probleme al contor di Neumann
(Morassi et al., 2023a, 2024):

(Mαβ +M
h
αβγ,γ),αβ = 0, in Ω, (4.14)

(Mαβ +M
h
αβγ,γ),αnβ + ((Mαβ +M

h
αβγ,γ)nατβ),s + (M

h
αβγτατβnγ),ss−

− (M
h
αβγnγ(τα,sτβ − nα,snβ)),s = −V̂ , su ∂Ω,

(4.15)

(Mαβ +M
h
αβγ,γ)nαnβ + (M

h
αβγnγ(ταnβ + τβnα)),s−

−M
h
αβγnγ(nα,sτβ) = M̂n, su ∂Ω,

(4.16)

M
h
αβγnαnβnγ = −M̂h

n , su ∂Ω. (4.17)

Si osserve che la procedure doprade par otign̂ı la formulazion fuarte dal
probleme di ecuilibri de formulazion debile (2.51) e je une formulazion
standard, ma e domande une cierte cautele par tign̂ı cont de variazion
de base locâl (n, τττ) in presince di contors arcâts, un aspiet trascurât
dispès in leterature (Morassi et al., 2023a, 2024). Dopo la integrazion
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Teoreme 4.2 (Esistence, unicitât e regolaritât H3). Al sedi Ω
un domini limitât in R2 cun frontiere ∂Ω di classe C2,1 cun costan-
tis r0,M0. Assumı̀n che i tensôrs P, Ph ∈ L∞(Ω,L(M̂2, M̂2)) e Q ∈
L∞(Ω,L(M̂3, M̂3)) a sodisfin, rispetivementri, lis cundizions di sime-
trie (4.21), (4.22), (4.25) e lis cundizions di convessitât fuarte (4.23),

(4.26). A sedin i dâts V̂ , M̂n, M̂
h
n tant che in (4.18) e che a sodisfin lis

cundizions di compatibilitât (4.19).
Il probleme di Neumann (4.14)–(4.17) al amet une soluzion debile

uniche u ∈ H3(Ω) che e sodisfe (4.30) e, cun di plui,

∥u∥H3(Ω) ≤ C
(
∥V̂ ∥H−5/2(∂Ω) + r−1

0 ∥M̂n∥H−3/2(∂Ω) + r−2
0 ∥M̂h

n∥H−1/2(∂Ω)

)

(4.31)
dulà che la costante C > 0 e dipent dome di t

r0
, M0, M1, ξP, ξQ.

O conclud̀ın cheste sezion cuntun risultât globâl e un risultât miorât
di regolaritât interne.

Teoreme 4.3 (Regolaritât globâl H4). Al sedi Ω un domini limitât
in R2 cun contor ∂Ω di classe C3,1 cun costantis r0, M0, e che al sod-
isfe (4.13). Assumin che i tensôrs P, Ph ∈ C0,1(Ω,L(M̂2, M̂2)) e Q ∈
C0,1(Ω,L(M̂3, M̂3)) a sodisfin, rispetivementri, lis cundizions di sime-
trie (4.21), (4.22), (4.25) e lis cundizions di convessitât fuarte (4.23),
(4.26). E sedi u ∈ H3(Ω) la soluzion debile dal probleme di Neumann

(4.14)–(4.17) che e sodisfe (4.30), dulà che V̂ ∈ H−3/2(∂Ω), M̂n ∈
H−1/2(∂Ω), M̂h

n ∈ H1/2(∂Ω) a son tâls che lis cundizions di compati-
bilitât (4.19) a son sodisfatis.

O vin duncje u ∈ H4(Ω) e

∥u∥H4(Ω) ≤ C
(
∥V̂ ∥H−3/2(∂Ω) + r−1

0 ∥M̂n∥H−1/2(∂Ω) + r−2
0 ∥M̂h

n∥H1/2(∂Ω)

)
,

(4.32)
dulà che la costante C > 0 e dipent dome di t

r0
, M0, M1, ξP, ξQ,

∥P∥C0,1(Ω), ∥Ph∥C0,1(Ω), ∥Q∥C0,1(Ω).

Teoreme 4.4 (Regolaritât interne miorade). E sedi Bσ une sfere
vierte R2 centrade inte origjin e cun rai σ. Al sedi u ∈ H3(Bσ) cuss̀ı
che

a(u, φ) = 0 par ogni φ ∈ H3
0 (Bσ), (4.33)

PhA ·B = PhB ·A, c.d. in Ω, (4.22)

par ogni A,B ∈ M̂2, e la cundizion di convessitât fuarte

(P+ Ph)A ·A ≥ t3ξP|A|2, c.d. in Ω, (4.23)

par ogni A ∈ M̂2, dulà che ξP e je une costante positive.

Lis funzions M
h
ijk (i, j, k = 1, 2) a puedin jessi esprimudis tant che

M
h
ijk = Qijklmnu,lmn (M

h
= QD3u), (4.24)

dulà che Qijklmn a son lis componentis Cartesianis dal tensôr di sest

ordin Q = Q(x) ∈ L∞(Ω,L(M̂3, M̂3)), e Q al è assumût sodisfâ lis
cundizions di simetrie

QA ·B = QB ·A, c.d. in Ω, (4.25)

par ogni A,B ∈ M̂3, e la cundizion di convessitât fuarte

QA ·A ≥ t5ξQ|A|2, c.d. in Ω, (4.26)

par ogni A ∈ M̂3, dulà che ξQ e je une costante positive.
La formulazion debile dal probleme di Neumann (4.14)–(4.17), cun

dâts di contor che a sodisfin (4.18) e (4.19), e consist intal determinâ
une funzion u ∈ H3(Ω) (soluzion debile) cuss̀ı che

a(u,w) = L(w), par ogni w ∈ H3(Ω), (4.27)

dulà che

a(u,w) =

∫

Ω
−Mαβ(u)w,αβ +M

h
αβγ(u)w,αβγ =

=

∫

Ω
(P+ Ph)D2u ·D2w +QD3u ·D3w,

(4.28)

L(w) = −
∫

∂Ω
V̂ w + M̂nw,n+M̂h

nw,nn . (4.29)

Par identificâ une soluzion univoche, o assumı̀n chestis cundizions di
normalizazion ∫

Ω
u = 0,

∫

Ω
u,α = 0, α = 1, 2. (4.30)

O sin cumò in cundizion di afermâ la esistence, la unicitât e i risultâts di
regolaritâts buinis pe analisi. I detais des dimostrazions a son disponibii
in Morassi et al. (2024).
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Teoreme 4.2 (Esistence, unicitât e regolaritât H3). Al sedi Ω
un domini limitât in R2 cun frontiere ∂Ω di classe C2,1 cun costan-
tis r0,M0. Assumı̀n che i tensôrs P, Ph ∈ L∞(Ω,L(M̂2, M̂2)) e Q ∈
L∞(Ω,L(M̂3, M̂3)) a sodisfin, rispetivementri, lis cundizions di sime-
trie (4.21), (4.22), (4.25) e lis cundizions di convessitât fuarte (4.23),

(4.26). A sedin i dâts V̂ , M̂n, M̂
h
n tant che in (4.18) e che a sodisfin lis

cundizions di compatibilitât (4.19).
Il probleme di Neumann (4.14)–(4.17) al amet une soluzion debile

uniche u ∈ H3(Ω) che e sodisfe (4.30) e, cun di plui,

∥u∥H3(Ω) ≤ C
(
∥V̂ ∥H−5/2(∂Ω) + r−1

0 ∥M̂n∥H−3/2(∂Ω) + r−2
0 ∥M̂h

n∥H−1/2(∂Ω)

)

(4.31)
dulà che la costante C > 0 e dipent dome di t

r0
, M0, M1, ξP, ξQ.

O conclud̀ın cheste sezion cuntun risultât globâl e un risultât miorât
di regolaritât interne.

Teoreme 4.3 (Regolaritât globâl H4). Al sedi Ω un domini limitât
in R2 cun contor ∂Ω di classe C3,1 cun costantis r0, M0, e che al sod-
isfe (4.13). Assumin che i tensôrs P, Ph ∈ C0,1(Ω,L(M̂2, M̂2)) e Q ∈
C0,1(Ω,L(M̂3, M̂3)) a sodisfin, rispetivementri, lis cundizions di sime-
trie (4.21), (4.22), (4.25) e lis cundizions di convessitât fuarte (4.23),
(4.26). E sedi u ∈ H3(Ω) la soluzion debile dal probleme di Neumann

(4.14)–(4.17) che e sodisfe (4.30), dulà che V̂ ∈ H−3/2(∂Ω), M̂n ∈
H−1/2(∂Ω), M̂h

n ∈ H1/2(∂Ω) a son tâls che lis cundizions di compati-
bilitât (4.19) a son sodisfatis.

O vin duncje u ∈ H4(Ω) e

∥u∥H4(Ω) ≤ C
(
∥V̂ ∥H−3/2(∂Ω) + r−1

0 ∥M̂n∥H−1/2(∂Ω) + r−2
0 ∥M̂h

n∥H1/2(∂Ω)

)
,

(4.32)
dulà che la costante C > 0 e dipent dome di t

r0
, M0, M1, ξP, ξQ,

∥P∥C0,1(Ω), ∥Ph∥C0,1(Ω), ∥Q∥C0,1(Ω).

Teoreme 4.4 (Regolaritât interne miorade). E sedi Bσ une sfere
vierte R2 centrade inte origjin e cun rai σ. Al sedi u ∈ H3(Bσ) cuss̀ı
che

a(u, φ) = 0 par ogni φ ∈ H3
0 (Bσ), (4.33)

PhA ·B = PhB ·A, c.d. in Ω, (4.22)

par ogni A,B ∈ M̂2, e la cundizion di convessitât fuarte

(P+ Ph)A ·A ≥ t3ξP|A|2, c.d. in Ω, (4.23)

par ogni A ∈ M̂2, dulà che ξP e je une costante positive.

Lis funzions M
h
ijk (i, j, k = 1, 2) a puedin jessi esprimudis tant che

M
h
ijk = Qijklmnu,lmn (M

h
= QD3u), (4.24)

dulà che Qijklmn a son lis componentis Cartesianis dal tensôr di sest

ordin Q = Q(x) ∈ L∞(Ω,L(M̂3, M̂3)), e Q al è assumût sodisfâ lis
cundizions di simetrie

QA ·B = QB ·A, c.d. in Ω, (4.25)

par ogni A,B ∈ M̂3, e la cundizion di convessitât fuarte

QA ·A ≥ t5ξQ|A|2, c.d. in Ω, (4.26)

par ogni A ∈ M̂3, dulà che ξQ e je une costante positive.
La formulazion debile dal probleme di Neumann (4.14)–(4.17), cun

dâts di contor che a sodisfin (4.18) e (4.19), e consist intal determinâ
une funzion u ∈ H3(Ω) (soluzion debile) cuss̀ı che

a(u,w) = L(w), par ogni w ∈ H3(Ω), (4.27)

dulà che

a(u,w) =

∫

Ω
−Mαβ(u)w,αβ +M

h
αβγ(u)w,αβγ =

=

∫

Ω
(P+ Ph)D2u ·D2w +QD3u ·D3w,

(4.28)

L(w) = −
∫

∂Ω
V̂ w + M̂nw,n+M̂h

nw,nn . (4.29)

Par identificâ une soluzion univoche, o assumı̀n chestis cundizions di
normalizazion ∫

Ω
u = 0,

∫

Ω
u,α = 0, α = 1, 2. (4.30)

O sin cumò in cundizion di afermâ la esistence, la unicitât e i risultâts di
regolaritâts buinis pe analisi. I detais des dimostrazions a son disponibii
in Morassi et al. (2024).
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Qijklmn =
1

3
(b0 − 3b1)δijδknδlm +

1

6
(b0 − 3b1)δik(δjlδmn + δjmδln)+

+
1

6
(b0 − 3b1)δjk(δilδmn + δimδln) +Q8δkn(δilδjm + δimδjl)+

+Q9(δjn(δilδkm + δimδkl) + δin(δjlδkm + δjmδkl)),
(4.38)

dulà che 2(Q8 + 2Q9) = 5b1.
Daûr des ipotesis a priori formuladis parsore, o sav̀ın che la rigjiditât

ae flession (par unitât di lungjece) B = B(x) e je dade de funzion

B(x) =
t3E(x)

12(1− ν2(x))
, c.d. in Ω, (4.39)

dulà che il modul di Young E e il coeficient di Poisson ν dal materiâl a
puedin jessi esprimûts in tiermins dai modui di Lamé µ e λ come

E(x) =
µ(x)(2µ(x) + 3λ(x))

µ(x) + λ(x)
, ν(x) =

λ(x)

2(µ(x) + λ(x))
. (4.40)

I coeficients ai(x), i = 0, 1, 2, a son dâts di

a0(x) = 2µ(x)tl20 , a1(x) =
2

15
µ(x)tl21 , a2(x) = µ(x)tl22 c.d. in Ω,

(4.41)
dulà che i parametris di scjale dal materiâl li a son assumûts come costan-
tis positivis (Morassi et al., 2023a). O indich̀ın cun

l = min{l0, l1, l2}. (4.42)

I coeficients bi(x), i = 0, 1, a son dâts di

b0(x) = 2µ(x)
t3

12
l20 , b1(x) =

2

5
µ(x)

t3

12
l21 c.d. in Ω. (4.43)

In secont lûc, o assumı̀n che µ a λ a sodisfin lis cundizions di eliticitât

µ(x) ≥ α0 > 0, 2µ(x) + 3λ(x) ≥ γ0 > 0 c.d. in Ω, (4.44)

dulà che α0, γ0 a son costantis positivis. Di (4.41), (4.43) e (4.44) o vin
ancje

ai(x) ≥ tl2αh
0 > 0, i = 0, 1, 2, bj(x) ≥ t3l2βh

0 > 0, j = 0, 1, c.d. in Ω,
(4.45)

cun

a(u, φ) =

∫

Bσ

(P+ Ph)D2u ·D2φ+QD3u ·D3φ, (4.34)

dulà che i tensôrs P,Ph ∈ C1,1(Bσ,L(M̂2, M̂2)), Q ∈ C2,1(Bσ,L(M̂3, M̂3))
a sodisfin, rispetivementri, lis cundizions di simetrie (4.21), (4.22), (4.25)
e lis cundizions di convessitât fuarte (4.23), (4.26).

Alore u ∈ H6(Bσ
8
) e o vin

∥u∥H6(Bσ
8
) ≤ C∥u∥H3(Bσ), (4.35)

dulà che C > 0 al dipent dome di t, ξP, ξQ, ∥P∥C1,1(Bσ)
, ∥Ph∥C1,1(Bσ)

,

∥Q∥C2,1(Bσ)
.

4.4 Stimis di grandece par nanoplachis. Par semplificâ la presentazion
dai risultâts, o calcolar̀ın dome che il câs di inclusions elastichis costi-
tuidis di materiâl plui dûr rispiet al materiâl che i sta ator. Il câs di
inclusions plui fofis al pues jessi analizât in mût simil e nol introdûs
elements gnûfs sostanziâi (Morassi et al., 2023b).

4.4.1 Il probleme inviers

Supoǹın che al sedi pussibil che une inclusion Ω̃×
(
− t

2 ,
t
2

)
e sedi presinte

intune nanoplache Ω×
(
− t

2 ,
t
2

)
, dulà che Ω̃ al è un sotinsiemi misurabil,

pussibilmentri disconetût, di Ω.
O cjap̀ın in considerazion i tensôrs di elasticitât P, P̃, Ph, P̃h ∈

L∞(Ω,L(M̂2, M̂2)) eQ, Q̃ ∈ L∞(Ω,L(M̂3, M̂3)), che a sodisfin, rispetive-
mentri, lis cundizions di simetrie (4.21), (4.22) e (4.25).

O introdus̀ın altris ipotesi a priori sui tensôrs di elasticitât. Prin di
dut, met̀ın che il materiâl de nanoplache di riferiment (che al cengle la
inclusion) al sedi isotrop, o sedi che lis componentis Cartesianis di P,
Ph, Q a sedin dadis di (che si viodi la (2.4))

Pαβγδ = B((1− ν)δαγδβδ + νδαβδγδ), (4.36)

P h
αβγδ = (2a2 + 5a1)δαγδβδ + (−a1 − a2 + a0)δαβδγδ, (4.37)
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Qijklmn =
1

3
(b0 − 3b1)δijδknδlm +

1

6
(b0 − 3b1)δik(δjlδmn + δjmδln)+

+
1

6
(b0 − 3b1)δjk(δilδmn + δimδln) +Q8δkn(δilδjm + δimδjl)+

+Q9(δjn(δilδkm + δimδkl) + δin(δjlδkm + δjmδkl)),
(4.38)

dulà che 2(Q8 + 2Q9) = 5b1.
Daûr des ipotesis a priori formuladis parsore, o sav̀ın che la rigjiditât

ae flession (par unitât di lungjece) B = B(x) e je dade de funzion

B(x) =
t3E(x)

12(1− ν2(x))
, c.d. in Ω, (4.39)

dulà che il modul di Young E e il coeficient di Poisson ν dal materiâl a
puedin jessi esprimûts in tiermins dai modui di Lamé µ e λ come

E(x) =
µ(x)(2µ(x) + 3λ(x))

µ(x) + λ(x)
, ν(x) =

λ(x)

2(µ(x) + λ(x))
. (4.40)

I coeficients ai(x), i = 0, 1, 2, a son dâts di

a0(x) = 2µ(x)tl20 , a1(x) =
2

15
µ(x)tl21 , a2(x) = µ(x)tl22 c.d. in Ω,

(4.41)
dulà che i parametris di scjale dal materiâl li a son assumûts come costan-
tis positivis (Morassi et al., 2023a). O indich̀ın cun

l = min{l0, l1, l2}. (4.42)

I coeficients bi(x), i = 0, 1, a son dâts di

b0(x) = 2µ(x)
t3

12
l20 , b1(x) =

2

5
µ(x)

t3

12
l21 c.d. in Ω. (4.43)

In secont lûc, o assumı̀n che µ a λ a sodisfin lis cundizions di eliticitât

µ(x) ≥ α0 > 0, 2µ(x) + 3λ(x) ≥ γ0 > 0 c.d. in Ω, (4.44)

dulà che α0, γ0 a son costantis positivis. Di (4.41), (4.43) e (4.44) o vin
ancje

ai(x) ≥ tl2αh
0 > 0, i = 0, 1, 2, bj(x) ≥ t3l2βh

0 > 0, j = 0, 1, c.d. in Ω,
(4.45)

cun

a(u, φ) =

∫

Bσ

(P+ Ph)D2u ·D2φ+QD3u ·D3φ, (4.34)

dulà che i tensôrs P,Ph ∈ C1,1(Bσ,L(M̂2, M̂2)), Q ∈ C2,1(Bσ,L(M̂3, M̂3))
a sodisfin, rispetivementri, lis cundizions di simetrie (4.21), (4.22), (4.25)
e lis cundizions di convessitât fuarte (4.23), (4.26).

Alore u ∈ H6(Bσ
8
) e o vin

∥u∥H6(Bσ
8
) ≤ C∥u∥H3(Bσ), (4.35)

dulà che C > 0 al dipent dome di t, ξP, ξQ, ∥P∥C1,1(Bσ)
, ∥Ph∥C1,1(Bσ)

,

∥Q∥C2,1(Bσ)
.

4.4 Stimis di grandece par nanoplachis. Par semplificâ la presentazion
dai risultâts, o calcolar̀ın dome che il câs di inclusions elastichis costi-
tuidis di materiâl plui dûr rispiet al materiâl che i sta ator. Il câs di
inclusions plui fofis al pues jessi analizât in mût simil e nol introdûs
elements gnûfs sostanziâi (Morassi et al., 2023b).

4.4.1 Il probleme inviers

Supoǹın che al sedi pussibil che une inclusion Ω̃×
(
− t

2 ,
t
2

)
e sedi presinte

intune nanoplache Ω×
(
− t

2 ,
t
2

)
, dulà che Ω̃ al è un sotinsiemi misurabil,

pussibilmentri disconetût, di Ω.
O cjap̀ın in considerazion i tensôrs di elasticitât P, P̃, Ph, P̃h ∈

L∞(Ω,L(M̂2, M̂2)) eQ, Q̃ ∈ L∞(Ω,L(M̂3, M̂3)), che a sodisfin, rispetive-
mentri, lis cundizions di simetrie (4.21), (4.22) e (4.25).

O introdus̀ın altris ipotesi a priori sui tensôrs di elasticitât. Prin di
dut, met̀ın che il materiâl de nanoplache di riferiment (che al cengle la
inclusion) al sedi isotrop, o sedi che lis componentis Cartesianis di P,
Ph, Q a sedin dadis di (che si viodi la (2.4))

Pαβγδ = B((1− ν)δαγδβδ + νδαβδγδ), (4.36)

P h
αβγδ = (2a2 + 5a1)δαγδβδ + (−a1 − a2 + a0)δαβδγδ, (4.37)
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M
h
(u0) = QD3u0. O ricuard̀ın che u e u0 a son determinâts in mût uni-

voc des cundizions di normalizazion (4.30) e not̀ın che i dâts al contor

V̂ , M̂n, M̂
h
n associâts al probleme par u e u0 a son i stes.

O introdus̀ın cumò il lavôr esercitât da dâts al contor cuant che la
inclusion Ω̃ e je, rispetivementri, presinte o assente:

W = L(u) = −
∫

∂Ω
V̂ u+ M̂nu,n+M̂h

nu,nn , (4.52)

W0 = L(u0) = −
∫

∂Ω
V̂ u0 + M̂nu0,n + M̂h

nu0,nn. (4.53)

Chescj lavôrs a coincidin cu la energjie di deformazion imagazenade inte
nanoplache deformade, o sedi

W =

∫

Ω
(χ

Ω\Ω̃(P+ Ph) + χ
Ω̃
(P̃+ P̃h))D2u ·D2u+

+

∫

Ω
(χ

Ω\Ω̃Q+ χ
Ω̃
Q̃)D3u ·D3u,

(4.54)

W0 =

∫

Ω
(P+ Ph)D2u0 ·D2u0 +QD3u0 ·D3u0. (4.55)

4.4.2 Risultâts principâi

I doi teoremis seguit̂ıfs a dan dongje i nestris principâi risultâts relat̂ıfs
aes stimis di grandece pes nanoplachis cun inclusions duris; si viodi
Morassi et al. (2023b).

Teoreme 4.5 (Limit inferiôr di |Ω̃|). Al sedi Ω un domini limitât
in R2 cuss̀ı che ∂Ω al sedi di classe C2,1 cun costantis r0, M0 e che al
sodisfe (4.13). Al sedi Ω̃, Ω̃ ⊂⊂ Ω, un sotinsiemi misurabil di Ω che al
sodisfe

dist(Ω̃, ∂Ω) ≥ d0r0, (4.56)

dulà che d0 > e je une costante. O assumin che i tensôrs P, Ph, P̃, P̃h ∈
L∞(Ω,L(M̂2, M̂2)) e Q, Q̃ ∈ L∞(Ω,L(M̂3, M̂3)) a sodisfin lis cundizions
di simetrie (4.21), (4.22) e (4.25), lis cundizions di convessitât fuarte
(4.23) e (4.26), e lis cundizions di salt (4.48)–(4.49). Cun di plui, o
assumı̀n che i tensôrs P, Ph, Q a sedin tâi di sodisfâ lis cundizions di
regolaritât (4.50).

dulà che αh
0 = 2

15α0 e βh
0 = 1

30α0. Si che duncje, di (4.44), (4.45) o
otigǹın chestis cundizions di convessitât fuarte su P + Ph e Q (che si
viodi il Leme 2.1 te sezion 2.4). Par ogni A ∈ M̂2 o vin

(P+ Ph)A ·A ≥ t(t2 + l2)ξP|A|2 c.d. in Ω; (4.46)

par ogni B ∈ M̂3 o vin

QB ·B ≥ t3l2ξQ|B|2 c.d. in Ω; (4.47)

dulà che ξP, ξQ a son costantis positivis dipendentis dome di α0 e γ0.
In tierç lûc, met̀ın che la inclusion discognossude e sedi costituide

di materiâl “plui dûr” a pet dal materiâl de nanoplache ator ator de
inclusion intal sens seguit̂ıf (limitazions sui salts):

a esistin η > 0, η > 0 e δ > 1, δ > 1 tâi che

η(P+Ph) ≤ (P̃+ P̃h)− (P+Ph) ≤ (δ− 1)(P+Ph), c.d. in Ω, (4.48)

ηQ ≤ Q̃−Q ≤ (δ − 1)Q, c.d. in Ω. (4.49)

Chi, ηQ ≤ Q̃ − Q al vûl d̂ı che ηQA · A ≤ (Q̃ − Q)A · A par ogni
A ∈ L(M̂3, M̂3), e chel istès pai tensôrs di cuart ordin.

O precis̀ın che lis ipotesis fatis parsore a garantissin che P̃+ P̃h e Q̃
a son convès in sens fuart c.d. in Ω.

Infin, par ce che al tocje la regolaritât di P, Ph e Q, o assumı̀n che
P, Ph ∈ C1,1(Ω) e Q ∈ C2,1(Ω), cun

∥P∥C1,1(Ω) + ∥Ph∥C1,1(Ω) + r−2
0 ∥Q∥C2,1(Ω) ≤ M2r

3
0, (4.50)

cun M2 dipendent di t
r0
, l
r0
.

I dâts al contor che a comparissin in (4.15)–(4.17) a son assumûts
tâi di sodisfâ lis cundizions di compatibilitât (4.19) e di jessi cuss̀ı che

V̂ ∈ H−3/2(∂Ω), M̂n ∈ H−1/2(∂Ω), M̂h
n ∈ H1/2(∂Ω). (4.51)

Di chi indenant, o indich̀ın cun u, u0 lis soluzions dal probleme di
ecuilibri pe nanoplache (4.14)–(4.17) cun e cence inclusion, o sedi u ∈
H3(Ω) e je la soluzion di (4.14)–(4.17) cuant che M(u) = −(χ

Ω\Ω̃(P +

Ph) + χ
Ω̃
(P̃ + P̃h))D2u, M

h
(u) = (χ

Ω\Ω̃Q + χ
Ω̃
Q̃)D3u e u0 ∈ H3(Ω)

e je la soluzion di (4.14)–(4.17) cuant che M(u0) = −(P + Ph)D2u0,
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M
h
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voc des cundizions di normalizazion (4.30) e not̀ın che i dâts al contor

V̂ , M̂n, M̂
h
n associâts al probleme par u e u0 a son i stes.

O introdus̀ın cumò il lavôr esercitât da dâts al contor cuant che la
inclusion Ω̃ e je, rispetivementri, presinte o assente:

W = L(u) = −
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in R2 cuss̀ı che ∂Ω al sedi di classe C2,1 cun costantis r0, M0 e che al
sodisfe (4.13). Al sedi Ω̃, Ω̃ ⊂⊂ Ω, un sotinsiemi misurabil di Ω che al
sodisfe

dist(Ω̃, ∂Ω) ≥ d0r0, (4.56)

dulà che d0 > e je une costante. O assumin che i tensôrs P, Ph, P̃, P̃h ∈
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assumı̀n che i tensôrs P, Ph, Q a sedin tâi di sodisfâ lis cundizions di
regolaritât (4.50).

dulà che αh
0 = 2

15α0 e βh
0 = 1

30α0. Si che duncje, di (4.44), (4.45) o
otigǹın chestis cundizions di convessitât fuarte su P + Ph e Q (che si
viodi il Leme 2.1 te sezion 2.4). Par ogni A ∈ M̂2 o vin

(P+ Ph)A ·A ≥ t(t2 + l2)ξP|A|2 c.d. in Ω; (4.46)

par ogni B ∈ M̂3 o vin

QB ·B ≥ t3l2ξQ|B|2 c.d. in Ω; (4.47)

dulà che ξP, ξQ a son costantis positivis dipendentis dome di α0 e γ0.
In tierç lûc, met̀ın che la inclusion discognossude e sedi costituide

di materiâl “plui dûr” a pet dal materiâl de nanoplache ator ator de
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a esistin η > 0, η > 0 e δ > 1, δ > 1 tâi che

η(P+Ph) ≤ (P̃+ P̃h)− (P+Ph) ≤ (δ− 1)(P+Ph), c.d. in Ω, (4.48)

ηQ ≤ Q̃−Q ≤ (δ − 1)Q, c.d. in Ω. (4.49)

Chi, ηQ ≤ Q̃ − Q al vûl d̂ı che ηQA · A ≤ (Q̃ − Q)A · A par ogni
A ∈ L(M̂3, M̂3), e chel istès pai tensôrs di cuart ordin.

O precis̀ın che lis ipotesis fatis parsore a garantissin che P̃+ P̃h e Q̃
a son convès in sens fuart c.d. in Ω.

Infin, par ce che al tocje la regolaritât di P, Ph e Q, o assumı̀n che
P, Ph ∈ C1,1(Ω) e Q ∈ C2,1(Ω), cun

∥P∥C1,1(Ω) + ∥Ph∥C1,1(Ω) + r−2
0 ∥Q∥C2,1(Ω) ≤ M2r

3
0, (4.50)

cun M2 dipendent di t
r0
, l
r0
.

I dâts al contor che a comparissin in (4.15)–(4.17) a son assumûts
tâi di sodisfâ lis cundizions di compatibilitât (4.19) e di jessi cuss̀ı che

V̂ ∈ H−3/2(∂Ω), M̂n ∈ H−1/2(∂Ω), M̂h
n ∈ H1/2(∂Ω). (4.51)

Di chi indenant, o indich̀ın cun u, u0 lis soluzions dal probleme di
ecuilibri pe nanoplache (4.14)–(4.17) cun e cence inclusion, o sedi u ∈
H3(Ω) e je la soluzion di (4.14)–(4.17) cuant che M(u) = −(χ

Ω\Ω̃(P +

Ph) + χ
Ω̃
(P̃ + P̃h))D2u, M

h
(u) = (χ

Ω\Ω̃Q + χ
Ω̃
Q̃)D3u e u0 ∈ H3(Ω)

e je la soluzion di (4.14)–(4.17) cuant che M(u0) = −(P + Ph)D2u0,
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ultin, o assumı̀n che ξ0, ξ1, ξ0, ξ1, 0 < ξ0 < ξ1, 0 < ξ0 < ξ1, a sedin tâi
che

t3ξ0|A|2 ≤ (P(x) + Ph(x))A ·A ≤ t3ξ1|A|2 c.d. x ∈ Ω, (4.61)

t5ξ0|B|2 ≤ Q(x)B ·B ≤ t5ξ1|B|2 c.d. x ∈ Ω, (4.62)

par ogni matriç A ∈ M̂2 e B ∈ M̂3. O assumı̀n che i salts (P̃ + P̃h) −
(P + Ph), Q̃ − Q a sodisfin (4.48)–(4.49). E sedi u, u0 ∈ H3(Ω) la
soluzion debile al probleme (4.14)–(4.17), normalizade come in (4.30),
cuant che la inclusion Ω̃ e je, rispetivementri, presinte o assente, pai
dâts di Neumann V̂ ∈ H−5/2(∂Ω), M̂n ∈ H−3/2(∂Ω), M̂h

n ∈ H−1/2(∂Ω)
che a sodisfin lis cundizions di compatibilitât (4.19).

O vin

η∗ξ0∗t
3

δ∗

∫

Ω̃
|D2u0|2 + t2|D3u0|2 ≤ W0 −W ≤

≤ (δ∗ − 1)ξ∗1t
3

∫

Ω̃
|D2u0|2 + t2|D3u0|2,

(4.63)

dulà che η∗ = min{η, η}, δ∗ = max{δ, δ}, ξ0∗ = min{ξ0, ξ0}, ξ∗1 =
max{ξ1, ξ1}.

Note 4.8. Not̀ın che se i materiâi che a costituissin la inclusion Ω̃ e il
materiâl ator in Ω \ Ω̃ a son isotrops cun modui di Lamé µ̃, λ̃ e µ, λ,
rispetivementri, alore lis cundizions di salt (4.48), (4.49) a puedin jessi

scritis tai tiermins de diference µ̃ − µ e κ̃ − κ, dulà che κ̃ = 2µ̃(2µ̃+3λ̃)

2µ̃+λ̃
,

κ = 2µ(2µ+3λ)
2µ+λ .

Dimostrazion dal Teoreme 4.5. Stimı̀n la bande a man drete di (4.63).
O not̀ın che al esist d∗, 0 < d∗ < d0, che al dipent dome di M0, cuss̀ı che
Ωd∗r0 al è di classe Lipschitz cun costantis γr0, γ

′M0, dulà che 0 < γ < 1
e γ′ > 1 a dipendin dome di M0, e Ω̃ ⊂ Ωd∗r0 ; che si viodi Gilbarg e
Trudinger (1983, Leme 14.16) pai detais. Pal Teoreme di Imersion di
Sobolev (Adams, 1975, Cjapitul 5, Teoreme 5.4)

W0 −W ≤ Cr30

∫

Ω̃
|D2u0|2 + r20|D3u0|2 ≤ (4.64)

≤ Cr30|Ω̃|
(
∥D2u∥2

L∞(Ω̃)
+ r20∥D3u∥2

L∞(Ω̃)

)
≤ C

1

r0
|Ω̃|∥u0∥2H6(Ωd∗r0 )

.

O vin

|Ω̃| ≥ C+
1 r20

W0 −W

W
, (4.57)

dulà che la costante C+
1 e dipent dome di t

r0
, M0, M1, d0, ξP, ξQ, M2,

δ, δ.

Teoreme 4.6 (Limit superiôr di |Ω̃|). Al sedi Ω un domini limitât in
R2 tâl che ∂Ω cuss̀ı che al sedi di classe C3,1 cun costantis r0, M0 e che
al sodisfi (4.13). Al sedi Ω̃, Ω̃ ⊂⊂ Ω, un sotinsiemi misurabil di Ω, che
al sodisfe

dist(Ω̃, ∂Ω) ≥ d0r0, (4.58)

dulà che d0 e je une costante positive. O assumı̀n che i tensôrs P, Ph ∈
C1,1(Ω,L(M̂2, M̂2)) e Q ∈ C2,1(Ω,L(M̂3, M̂3)) a sodisfin, in maniere
rispetive, lis cundizions isotropichis (4.36), (4.37) e (4.38) e che i modui
di Lamé µ e λ a sodisfin lis cundizions di convessitât fuarte (4.44).
O assumı̀n P̃, P̃h ∈ L∞(Ω,L(M̂2, M̂2)) e Q̃ ∈ L∞(Ω,L(M̂3, M̂3)) e o
assumı̀n lis cundizions di salt (4.48)–(4.49).

O vin

|Ω̃| ≤ C+
2 r20

(
W0 −W

W0

)1/p

, (4.59)

dulà che lis costantis C+
2 e p > 1 a dipendin dome di t

r0
, l

r0
, M0, M1,

d0, α0, γ0, M2, η, η, δ, δ e dal rapuart

F =
∥V̂ ∥H−3/2(∂Ω) + r−1

0 ∥M̂n∥H−1/2(∂Ω) + r−2
0 ∥M̂h

n∥H1/2(∂Ω)

∥V̂ ∥H−5/2(∂Ω) + r−1
0 ∥M̂n∥H−3/2(∂Ω) + r−2

0 ∥M̂h
n∥H−1/2(∂Ω)

. (4.60)

4.5 Leme de energjie e dimostrazion dal limit inferiôr. Premet̀ın chest
leme de energjie, che al aferme che la diference di lavôr |W −W0| e je
stimade dal alt e dal bas de energjie di deformazion de soluzion no
perturbade u0 imagazenade inte inclusion Ω̃.

Leme 4.7 (Leme de energjie). Assumı̀n che Ω al sedi un domini
limitât in R2, tâl che ∂Ω al sedi di classe C2,1. Assumı̀n, po, che Ω̃
al sedi un sotinsiemi misurabil di Ω. Assumı̀n che i tensôrs P, Ph,
P̃, P̃h ∈ L∞(Ω,L(M̂2, M̂2)) e Q, Q̃ ∈ L∞(Ω,L(M̂3, M̂3)) a sodisfin,
rispetivementri, lis cundizions di simetrie (4.21), (4.22), (4.25). E, in
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ultin, o assumı̀n che ξ0, ξ1, ξ0, ξ1, 0 < ξ0 < ξ1, 0 < ξ0 < ξ1, a sedin tâi
che

t3ξ0|A|2 ≤ (P(x) + Ph(x))A ·A ≤ t3ξ1|A|2 c.d. x ∈ Ω, (4.61)

t5ξ0|B|2 ≤ Q(x)B ·B ≤ t5ξ1|B|2 c.d. x ∈ Ω, (4.62)

par ogni matriç A ∈ M̂2 e B ∈ M̂3. O assumı̀n che i salts (P̃ + P̃h) −
(P + Ph), Q̃ − Q a sodisfin (4.48)–(4.49). E sedi u, u0 ∈ H3(Ω) la
soluzion debile al probleme (4.14)–(4.17), normalizade come in (4.30),
cuant che la inclusion Ω̃ e je, rispetivementri, presinte o assente, pai
dâts di Neumann V̂ ∈ H−5/2(∂Ω), M̂n ∈ H−3/2(∂Ω), M̂h

n ∈ H−1/2(∂Ω)
che a sodisfin lis cundizions di compatibilitât (4.19).

O vin

η∗ξ0∗t
3

δ∗

∫

Ω̃
|D2u0|2 + t2|D3u0|2 ≤ W0 −W ≤

≤ (δ∗ − 1)ξ∗1t
3

∫

Ω̃
|D2u0|2 + t2|D3u0|2,

(4.63)

dulà che η∗ = min{η, η}, δ∗ = max{δ, δ}, ξ0∗ = min{ξ0, ξ0}, ξ∗1 =
max{ξ1, ξ1}.

Note 4.8. Not̀ın che se i materiâi che a costituissin la inclusion Ω̃ e il
materiâl ator in Ω \ Ω̃ a son isotrops cun modui di Lamé µ̃, λ̃ e µ, λ,
rispetivementri, alore lis cundizions di salt (4.48), (4.49) a puedin jessi

scritis tai tiermins de diference µ̃ − µ e κ̃ − κ, dulà che κ̃ = 2µ̃(2µ̃+3λ̃)

2µ̃+λ̃
,

κ = 2µ(2µ+3λ)
2µ+λ .

Dimostrazion dal Teoreme 4.5. Stimı̀n la bande a man drete di (4.63).
O not̀ın che al esist d∗, 0 < d∗ < d0, che al dipent dome di M0, cuss̀ı che
Ωd∗r0 al è di classe Lipschitz cun costantis γr0, γ

′M0, dulà che 0 < γ < 1
e γ′ > 1 a dipendin dome di M0, e Ω̃ ⊂ Ωd∗r0 ; che si viodi Gilbarg e
Trudinger (1983, Leme 14.16) pai detais. Pal Teoreme di Imersion di
Sobolev (Adams, 1975, Cjapitul 5, Teoreme 5.4)

W0 −W ≤ Cr30

∫

Ω̃
|D2u0|2 + r20|D3u0|2 ≤ (4.64)

≤ Cr30|Ω̃|
(
∥D2u∥2

L∞(Ω̃)
+ r20∥D3u∥2

L∞(Ω̃)

)
≤ C

1

r0
|Ω̃|∥u0∥2H6(Ωd∗r0 )

.

O vin

|Ω̃| ≥ C+
1 r20

W0 −W

W
, (4.57)

dulà che la costante C+
1 e dipent dome di t

r0
, M0, M1, d0, ξP, ξQ, M2,

δ, δ.

Teoreme 4.6 (Limit superiôr di |Ω̃|). Al sedi Ω un domini limitât in
R2 tâl che ∂Ω cuss̀ı che al sedi di classe C3,1 cun costantis r0, M0 e che
al sodisfi (4.13). Al sedi Ω̃, Ω̃ ⊂⊂ Ω, un sotinsiemi misurabil di Ω, che
al sodisfe

dist(Ω̃, ∂Ω) ≥ d0r0, (4.58)

dulà che d0 e je une costante positive. O assumı̀n che i tensôrs P, Ph ∈
C1,1(Ω,L(M̂2, M̂2)) e Q ∈ C2,1(Ω,L(M̂3, M̂3)) a sodisfin, in maniere
rispetive, lis cundizions isotropichis (4.36), (4.37) e (4.38) e che i modui
di Lamé µ e λ a sodisfin lis cundizions di convessitât fuarte (4.44).
O assumı̀n P̃, P̃h ∈ L∞(Ω,L(M̂2, M̂2)) e Q̃ ∈ L∞(Ω,L(M̂3, M̂3)) e o
assumı̀n lis cundizions di salt (4.48)–(4.49).

O vin

|Ω̃| ≤ C+
2 r20

(
W0 −W

W0

)1/p

, (4.59)

dulà che lis costantis C+
2 e p > 1 a dipendin dome di t

r0
, l

r0
, M0, M1,

d0, α0, γ0, M2, η, η, δ, δ e dal rapuart

F =
∥V̂ ∥H−3/2(∂Ω) + r−1

0 ∥M̂n∥H−1/2(∂Ω) + r−2
0 ∥M̂h

n∥H1/2(∂Ω)

∥V̂ ∥H−5/2(∂Ω) + r−1
0 ∥M̂n∥H−3/2(∂Ω) + r−2

0 ∥M̂h
n∥H−1/2(∂Ω)

. (4.60)

4.5 Leme de energjie e dimostrazion dal limit inferiôr. Premet̀ın chest
leme de energjie, che al aferme che la diference di lavôr |W −W0| e je
stimade dal alt e dal bas de energjie di deformazion de soluzion no
perturbade u0 imagazenade inte inclusion Ω̃.

Leme 4.7 (Leme de energjie). Assumı̀n che Ω al sedi un domini
limitât in R2, tâl che ∂Ω al sedi di classe C2,1. Assumı̀n, po, che Ω̃
al sedi un sotinsiemi misurabil di Ω. Assumı̀n che i tensôrs P, Ph,
P̃, P̃h ∈ L∞(Ω,L(M̂2, M̂2)) e Q, Q̃ ∈ L∞(Ω,L(M̂3, M̂3)) a sodisfin,
rispetivementri, lis cundizions di simetrie (4.21), (4.22), (4.25). E, in
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e k = 8.
Cun di plui, se 2r ≤ s ≤ R1

211
alore o vin

∫

Bs

∣∣D2u0
∣∣2 ≤

(
C

∫

BR1/2

∣∣D2u0
∣∣2
)1−θ(s,r)(∫

Br

∣∣D2u0
∣∣2
)θ(s,r)

, (4.69)

dulà che

θ(s, r) =
1

1 + 6k log2
s
r

(4.70)

cun k = 8.

Par otign̂ı il limit superiôr desiderât, o dopr̀ın ancjemò il Leme de
energjie 4.7. In ogni câs, tal stimâ la integrâl

∫
Ω̃
|D2u0|2 + |D3u0|2 dal

bas, si à di frontâ il pussibil anulament di D2u0 e D3u0 intai ponts
internis. A chest fin, un strument fondamentâl al è un risultât di con-
tinuazion uniche, cognossût tant che propagazion Lipschitz de piçulece.
La sô dimostrazion si base prin di dut suntune iterazion de disavualance
des trê sferis (4.69).

Proposizion 4.10 (Propagazion Lipschitz de piçulece). Al sedi Ω
un domini limitât in R2, cuss̀ı che ∂Ω al è di classe C3,1, cun costan-
tis r0,M0, e che al sodisfe lis cundizions (4.13). Assumı̀n che il tensôr
P,Ph ∈ C1,1(Ω,L(M̂2, M̂2)), Q ∈ C2,1(Ω,L(M̂3, M̂3)), al sedi dât, ri-
spetivementri, di (4.36), (4.37) e (4.38) e che al sodisfi la cundizion
di eliticitât (4.44). E sedi u0 ∈ H3(Ω) la uniche soluzion dal proble-
me (4.14)–(4.17) normalizade di (4.30), cun dâts di Neumann V̂ ∈
H−3/2(∂Ω), M̂n ∈ H−1/2(∂Ω), M̂h

n ∈ H1/2(∂Ω) che e sodisfe la cun-
dizion di compatibilitât (4.19). Al esist χ > 1 che al dipent dome di α0,
γ0, M2,

t
r0

e l
r0

cuss̀ı che par ogni s > 0 e par ogni x ∈ Ωχsr0 o vin che

∫

Bsr0(x)

|D2u0|2 ≥ Cs

∫

Ω
|D2u0|2 , (4.71)

dulà che Cs > 0 al dipent dome di M0, M1,
t
r0
, l

r0
, α0, γ0, M2, s e dal

rapuart di F dât in (4.60).

La propagazion Lipschitz de piçulece e je utile par otign̂ı une disa-
vualance di dopleament pe Hessiane de soluzion u0 in tiermins di dâts
al contor.

O osserv̀ın che, cun un argoment di cuviertidure e stimis di regolaritât
interne (4.35), o vin

∥u0∥2H6(Ωd∗r0 )
≤ C

1

r0
∥u0∥2H3(Ω) . (4.65)

Duncje, des (4.64) e (4.65), de disavualance standard di Poincarè
(Morassi et al., 2007, Proposizion 3.3), cun (4.46), (4.47) e (4.55), o
otigǹın

W0 −W ≤ C
1

r0
|Ω̃|∥u0∥2H3(Ω) ≤ r0|Ω̃|

∫

Ω
|D2u0|2 + r20|D3u0|2 ≤

≤ C
|Ω̃|
r20

∫

Ω
(P+ Ph)D2u0 ·D2u0 +QD3u0 ·D3u0 =

C

r20
|Ω̃|W0,(4.66)

dulà che C > 0 al dipent di d0, δ, δ̄,
t
r0
,M0,M1, ξP, ξQ,M2. Duncje, e ven

daûr la stime (4.57).

4.6 Continuazion uniche e dimostrazion dal limit superiôr. Come che

o vin premetût inte sezion introdutive, il limit superiôr di |Ω̃| al domande
stimis cuantitativis de continuazion uniche pe soluzion u0 al probleme
no perturbât. Scomenc̀ın riclamant inte Proposizion 4.9 i elements fon-
damentâi di chestis stimis sot forme di disavualance des trê sferis e
disavualance di dopleament locâl pe matriç Hessiane de soluzion; par
plui detais e dimostrazions si viodi Morassi et al. (2024).

Proposizion 4.9 (Disavualance di dopleament e disavualance
des trê sferis pe Hessiane). Assumı̀n che i tensôrs dal materiâl
P,Ph ∈ C1,1(B1,L(M̂2, M̂2)), Q ∈ C2,1(B1,L(M̂3, M̂3)) a sedin dâts di
(4.36), (4.37), (4.38) e che a sodisfin, rispetivementri, la cundizion di
regolaritât (4.50), lis cundizions di convessitât fuarte (4.46), (4.47). As-
sumı̀n che u0 ∈ H6(B1) e sedi la soluzion debile a (4.14).

Al esist alore C > 1, che al dipent dome di M2, α0, γ0, t, l, cuss̀ı che,
par ogni 0 < r < R1

211
o vin

∫

B2r

∣∣D2u0
∣∣2 ≤ CN

3k
∫

Br

∣∣D2u0
∣∣2 , (4.67)

dulà che

N =

∥∥D2u0
∥∥2
L2(BR1)

∥D2u0∥2
L2

(
BR1/2

9

) (4.68)
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e k = 8.
Cun di plui, se 2r ≤ s ≤ R1

211
alore o vin

∫

Bs

∣∣D2u0
∣∣2 ≤

(
C

∫

BR1/2

∣∣D2u0
∣∣2
)1−θ(s,r)(∫

Br

∣∣D2u0
∣∣2
)θ(s,r)

, (4.69)

dulà che

θ(s, r) =
1

1 + 6k log2
s
r

(4.70)

cun k = 8.

Par otign̂ı il limit superiôr desiderât, o dopr̀ın ancjemò il Leme de
energjie 4.7. In ogni câs, tal stimâ la integrâl

∫
Ω̃
|D2u0|2 + |D3u0|2 dal

bas, si à di frontâ il pussibil anulament di D2u0 e D3u0 intai ponts
internis. A chest fin, un strument fondamentâl al è un risultât di con-
tinuazion uniche, cognossût tant che propagazion Lipschitz de piçulece.
La sô dimostrazion si base prin di dut suntune iterazion de disavualance
des trê sferis (4.69).

Proposizion 4.10 (Propagazion Lipschitz de piçulece). Al sedi Ω
un domini limitât in R2, cuss̀ı che ∂Ω al è di classe C3,1, cun costan-
tis r0,M0, e che al sodisfe lis cundizions (4.13). Assumı̀n che il tensôr
P,Ph ∈ C1,1(Ω,L(M̂2, M̂2)), Q ∈ C2,1(Ω,L(M̂3, M̂3)), al sedi dât, ri-
spetivementri, di (4.36), (4.37) e (4.38) e che al sodisfi la cundizion
di eliticitât (4.44). E sedi u0 ∈ H3(Ω) la uniche soluzion dal proble-
me (4.14)–(4.17) normalizade di (4.30), cun dâts di Neumann V̂ ∈
H−3/2(∂Ω), M̂n ∈ H−1/2(∂Ω), M̂h

n ∈ H1/2(∂Ω) che e sodisfe la cun-
dizion di compatibilitât (4.19). Al esist χ > 1 che al dipent dome di α0,
γ0, M2,

t
r0

e l
r0

cuss̀ı che par ogni s > 0 e par ogni x ∈ Ωχsr0 o vin che

∫

Bsr0(x)

|D2u0|2 ≥ Cs

∫

Ω
|D2u0|2 , (4.71)

dulà che Cs > 0 al dipent dome di M0, M1,
t
r0
, l

r0
, α0, γ0, M2, s e dal

rapuart di F dât in (4.60).

La propagazion Lipschitz de piçulece e je utile par otign̂ı une disa-
vualance di dopleament pe Hessiane de soluzion u0 in tiermins di dâts
al contor.

O osserv̀ın che, cun un argoment di cuviertidure e stimis di regolaritât
interne (4.35), o vin

∥u0∥2H6(Ωd∗r0 )
≤ C

1

r0
∥u0∥2H3(Ω) . (4.65)

Duncje, des (4.64) e (4.65), de disavualance standard di Poincarè
(Morassi et al., 2007, Proposizion 3.3), cun (4.46), (4.47) e (4.55), o
otigǹın

W0 −W ≤ C
1

r0
|Ω̃|∥u0∥2H3(Ω) ≤ r0|Ω̃|

∫

Ω
|D2u0|2 + r20|D3u0|2 ≤

≤ C
|Ω̃|
r20

∫

Ω
(P+ Ph)D2u0 ·D2u0 +QD3u0 ·D3u0 =

C

r20
|Ω̃|W0,(4.66)

dulà che C > 0 al dipent di d0, δ, δ̄,
t
r0
,M0,M1, ξP, ξQ,M2. Duncje, e ven

daûr la stime (4.57).

4.6 Continuazion uniche e dimostrazion dal limit superiôr. Come che

o vin premetût inte sezion introdutive, il limit superiôr di |Ω̃| al domande
stimis cuantitativis de continuazion uniche pe soluzion u0 al probleme
no perturbât. Scomenc̀ın riclamant inte Proposizion 4.9 i elements fon-
damentâi di chestis stimis sot forme di disavualance des trê sferis e
disavualance di dopleament locâl pe matriç Hessiane de soluzion; par
plui detais e dimostrazions si viodi Morassi et al. (2024).

Proposizion 4.9 (Disavualance di dopleament e disavualance
des trê sferis pe Hessiane). Assumı̀n che i tensôrs dal materiâl
P,Ph ∈ C1,1(B1,L(M̂2, M̂2)), Q ∈ C2,1(B1,L(M̂3, M̂3)) a sedin dâts di
(4.36), (4.37), (4.38) e che a sodisfin, rispetivementri, la cundizion di
regolaritât (4.50), lis cundizions di convessitât fuarte (4.46), (4.47). As-
sumı̀n che u0 ∈ H6(B1) e sedi la soluzion debile a (4.14).

Al esist alore C > 1, che al dipent dome di M2, α0, γ0, t, l, cuss̀ı che,
par ogni 0 < r < R1

211
o vin

∫

B2r

∣∣D2u0
∣∣2 ≤ CN

3k
∫

Br

∣∣D2u0
∣∣2 , (4.67)

dulà che

N =

∥∥D2u0
∥∥2
L2(BR1)

∥D2u0∥2
L2

(
BR1/2

9

) (4.68)
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dulà che ϑ al è come te Proposizion 4.11 e dulà che A, p a dipendin
dome di α0, γ0, M2, M0, M1, r̄,

t
r0
, l

r0
e dal rapuart F dât di (4.60).

O riclamı̀n doi risultâts tecnics che a saran utii inte prossime di-
mostrazion.

Si à cheste disavualance di interpolazion (che si viodi il Teoreme 7.25
in Gilbarg e Trudinger (1983): par ogni u ∈ H4(Ω), o vin

∥u∥H3(Ω) ≤ C∥u∥
1
2

H2(Ω)
∥u∥

1
2

H4(Ω)
(4.76)

dulà che C > 0 al dipent dome di M0,M1.

Leme 4.13. Al sedi Ω un domini limitât in R2 cuss̀ı che ∂Ω al è di classe
C3,1 cun costantis r0,M0 che a sodisfin (4.13). O assumı̀n che P,Ph ∈
L∞(Ω,L(M̂2, M̂2)), Q ∈ L∞(Ω,L(M̂3, M̂3)) al sodisfi lis cundizions di
simetrie (4.21), (4.22) e (4.25) e lis ipotesis di convessitât fuarte (4.23)
e (4.26). Assumı̀n che u0 ∈ H3(Ω) e sedi la uniche soluzion debile
al probleme (4.14)–(4.17), che e sodisfe la cundizion di normalizazion
(4.30) cui dâts al contor che a sodisfin (4.18) e (4.19). O vin

∥V̂ ∥H−5/2(∂Ω) + r−1
0 ∥M̂n∥H−3/2(∂Ω) + r−2

0 ∥M̂h
n∥H−1/2(∂Ω) ≤ C∥u0∥H3(Ω) ,

(4.77)
dulà che C > 0 al dipent di M0,M1, ∥P∥L∞(Ω), ∥Ph∥L∞(Ω), ∥Q∥L∞(Ω).

Dimostrazion dal Teoreme 4.6. La dimostrazion si base essenzialmentri
su la cumbinazion de stime Ap (4.75) cuntun argoment di cuviertidure
e sul ûs dal Leme de energjie 4.7.

O cuvierz̀ın Ω̃ cun cubis sieradis, che no si soreponin dentri Qj ,
j = 1, ..., J , cun lât ϵ = θd0

4
√
2
r0, dulà che θ < 1 al è stât introdot inte

Proposizion 4.11. Al sedi p > 1 l’esponent introdusût inte Proposizion
4.12. Pe disavualance di Hölder’s o vin
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Aplicant la Proposizion 4.12, cun r̄ = d0
2 aes sferis Bj che a circoscrivin

ogni Qj , j = 1, ..., J , o otigǹın

Proposizion 4.11 (Disavualance di dopleament pe Hessiane in
tiermins di dâts al contor). Sot de ipotesi dal Teoreme 4.6, o as-
sumı̀n che u0 ∈ H3(Ω) e sedi la soluzion uniche a (4.14)-(4.17) che e

sodisfe (4.30), cun V̂ , M̂n, M̂
h
n che a sodisfin (4.18) e (4.19). E esist une

costante θ, 0 < θ < 1, dipendente dome di α0, γ0,M2,
t
r0
, l
r0
, cuss̀ı che

par ogni r̄ > 0 e par ogni x0 ∈ Ωr̄r0, o vin∫

B2r(x0)
|D2u0|2 ≤ K

∫

Br(x0)
|D2u0|2 (4.72)

par ogni r, 0 < r < θ
2 r̄r0, dulà che K > 0 al dipent dome di α0, γ0, M2,

M0, M1, r̄,
t
r0
, l

r0
e dal rapuart F dât di (4.60).

Dimostrazion de proposizion 4.11. Aplicant un argoment di riscjalament
a (4.67) e (4.68), e esist une costante assolude θ, 0 < θ < 1 cuss̀ı che par
ogni r̄ > 0 e par ogni x0 ∈ Ωr̄r0 o vin∫

B2r(x0)
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∫

Br(x0)
|D2u0|2 (4.73)

par ogni r, 0 < r < θ
2 r̄r0, dulà che la costante K > 0 al dipent dome di

α0, γ0,M2,
t
r0
, l
r0

e r̄ e in mût cressint dal rapuart
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29
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|D2u0|2
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Aplicant (4.71) par limitâ dal bas il denominadôr, otigǹın il limit desi-
derât.

Infin, par dimostrâ il limit superiôr al covente introdusi un argoment
sofisticât che al ven de teorie dai pês di Muckenhoupt (che si viodi la
Proposizion 4.12) basât soredut su la disavualance di dopleament (4.72).

Proposizion 4.12 (Proprietât Ap). A sedin sodisfatis lis assunzions
a priori de Proposizion 4.11. Par ogni r > 0 al esist B > 0 e p > 1
cuss̀ı che par ogni x0 ∈ Ωrr0 o vin
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dulà che ϑ al è come te Proposizion 4.11 e dulà che A, p a dipendin
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(4.30) cui dâts al contor che a sodisfin (4.18) e (4.19). O vin

∥V̂ ∥H−5/2(∂Ω) + r−1
0 ∥M̂n∥H−3/2(∂Ω) + r−2

0 ∥M̂h
n∥H−1/2(∂Ω) ≤ C∥u0∥H3(Ω) ,

(4.77)
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cu la costante C > 0 che e dipent dome di α0, γ0, M2, M1, M0,
t
r0
, l
r0
,

d0 e dal rapuart F dât di (4.60).
Infin, de bande çampe di (4.63) e di (4.83), o conclud̀ın otignint il

limit superiôr par |Ω̃| in (4.59).
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(4.79)

dulà che lis costantis p e A a dipendin dome di α0, γ0, M2, M1, M0,
t
r0
, l
r0
, d0 e dal rapuart F dât di (4.60). Cun (4.13) o vin

Jϵ2 =
J

j=1

|Qj | ≤ |Ω| ≤ M1r
2
0. (4.80)

Di consecuence, di (4.78)–(4.80) e riclamant la definizion di ϵ, o vin
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cun j cuss̀ı che

Bj

|D2u0|
2
= minj


Bj

|D2u0|
2
.

De Proposizion 4.10, de disavualance standard di Poincarè e de dis-
avualance di interpolazion (4.76), cun (4.77), (4.32), (4.50) e (4.55), o
vin 

Bj
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Cun (4.81) e (4.82) o vin
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cu la costante C > 0 che e dipent dome di α0, γ0, M2, M1, M0,
t
r0
, l
r0
,

d0 e dal rapuart F dât di (4.60).
Infin, de bande çampe di (4.63) e di (4.83), o conclud̀ın otignint il

limit superiôr par |Ω̃| in (4.59).
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A. Morassi, J. Fernández-Sáez, R. Zaera, and J.A. Loya. Resonator-
based detection in nanorods. Mechanical Systems and Signal Process-
ing, 93:645–660, 2017.

A. Munawar, Y. Ong, R. Schirhagl, M.A. Tahir, W.S. Khan, and S.Z.
Bajwa. Nanosensors for diagnosis with optical, electric and mechanical
transducers. RSC advances, 9:6793–6803, 2019.

I. Munch, P. Neff, A. Madeo, and I.D. Ghiba. The modified indetermi-
nate couple stress model: Why Yang et al.’s arguments motivating
a symmetric couple stress tensor contain a gap and why the couple

B. Jalalahmadi, F. Sadeghi, and D. Peroulis. A numerical fatigue dam-
age model for life scatter of mems devices. Journal of Microelectrome-
chanical Systems, 18:1016–1031, 2009.

H. Kang, J.K. Seo, and D. Sheen. The inverse conductivity problem with
one measurement: stability and estimation of size. SIAM Journal on
Mathematical Analysis, 28:1389–1405, 1997.

M. Kelleci, H. Aydogmus, L. Aslanbas, S.O. Erbil, and M.S. Hanay.
Towards microwave imaging of cells. Lab on a Chip, 18:463–472, 2018.

R. Knobel and B. Lowe. An inverse Sturm-Liouville problem for an
impedance. Zeitschrift für angewandte Mathematik und Physik, 44:
433–450, 1993.

S. Kong, S. Zhou, Z. Nie, and K. Wang. Static and dynamic analysis of
micro-beams based on strain gradient elasticity theory. International
Journal of Engineering Science, 47:487–498, 2009.

D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, and P. Tong. Experi-
ments and theory in strain gradient elasticity. Journal of the Mechan-
ics and Physics of Solids, 51:1477–1508, 2003.

E.M. Landis. A three-sphere theorem. Doklady Akademii Nauk SSSR,
148:277–279, 1963.

B.M. Levitan. Inverse Sturm-Liouville Problems. VNU Science Press,
1987.

X.F. Li, G.J. Tang, Z. B. Shen, and K.Y. Lee. Resonance frequency
and mass identification of zeptogram-scale nanosensor based on the
nonlocal beam theory. Ultrasonics, 55:75–84, 2015.

J. McLaughlin. Analytical methods for recovering coefficients in differ-
ential equations from spectral data. SIAM Review, 28:53–72, 1986.

J. McLaughlin. Stability theorems for inverse spectral problems. Inverse
Problems, 4:529–540, 1988.

R.D. Mindlin. Micro-structure in linear elasticity. Archive for Rational
Mechanics and Analysis, 16:51–78, 1964.

A .  M o r a s s i

86



R.D. Mindlin. Second gradient of strain and surface-tension in linear
elasticity. International Journal of Solids and Structures, 1:417–438,
1965.

R.D. Mindlin and N. Eshel. On first strain-gradient theories in linear
elasticity. International Journal of Solids and Structures, 4:109–124,
1968.

R.D. Mindlin and H.F. Tiersten. Effects of couple-stresses in linear
elasticity. Archive for Rational Mechanics and Analysis, 11:415–448,
1962.

A. Morassi. Damage detection and generalized Fourier coefficients. Jour-
nal of Sound and Vibration, 302:229–259, 2007.

A. Morassi, E. Rosset, and S. Vessella. Size estimates for inclusions
in an elastic plate by boundary measurements. Indiana University
Mathematical Journal, 56:2325–2384, 2007.

A. Morassi, A. Kawano, and R. Zaera. Inverse load identification in
vibrating nanoplates. Mathematical Methods in the Applied Sciences,
46:1045–1075, 2023a.

A. Morassi, E. Rosset, E. Sincich, and S. Vessella. Size estimates for
nanoplates. Inverse Problems, Paper 065005, 2023b.

A. Morassi, E. Rosset, E. Sincich, and S. Vessella. Strong unique con-
tinuation and global regularity estimates for nanoplates. Annali di
Matematica Pura ed Applicata, 203:235–271, 2024.
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