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Quantum physics
in secondary school
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Abstract. A project for the didactic innovation and the teachers’ training in quantum
mechanics consists of two main phases: traditional main experiments (e.g.: Franck-
Hertz, interference, polarisation); approach to Dirac to the theory. We outline a possi-
ble strategy to introduce the basic formalism of quantum mechanics without requiring
an advanced mathematical or physical background. The “Dirac formulation” of Quan-
tum Mechanics is developed by properly generalizing the description of a simple two-
state system, namely the linear polarization of photons interacting with polaroids and
birefringent crystals. We also discuss the relation between physical observables and lin-
ear operators, a connection which is usually considered as the “hardest” concept in
Quantum Mechanics.
A feasability study has been allowed by an experimentation in the fifth class of a Liceo.
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1. The basic ideas of our curricular
proposal. Quantum Mechanics is
usually introduced via a guided tour
through historical developments, to-
gether with a critical review of some
crucial experiments. Besides many
advantages (Messiah 1961), this atti-
tude suffers from a serious drawback,
especially in elementary treatments
where no room is left to go beyond
the first rudiment of wave-particle

duality, traditionally followed (or pre-
ceded) by a description of the Bohr-
like approach to atomic quantization.
According to our opinion, it is worth-
while to make a serious attempt to in-
troduce, from the very beginning,
what we might call the “Dirac formu-
lation” of Quantum Mechanics
(Dirac 1958). The reason is two-fold.
First of all, this formulation stresses
the role of the superposition princi-



ple, which is widely recognized as
the fundamental principle of Quan-
tum Mechanics, the one requiring
the most revolutionary change in
our understanding of physical reali-
ty; furthermore, the mathematical
formalism based on vector spaces
and linear operators provides a uni-
fying view of all microscopic phe-
nomena, from the simplest spinning
system to the most sophisticated
quantized field.

Our proposal is based on the be-
lief that the basic ideas of Quantum
Mechanics can be introduced with-
out requiring an advanced mathemat-
ical background. The ideal tool to ac-
complish this task is provided by the
interaction of linearly polarized pho-
tons with birefringent crystals and
polaroids (Baym 1969, Levy-Leblond
& Balibar 1990). This phenomenolo-
gy is so simple that it is almost trivial
to discuss as a physical state is conve-
niently represented by a vector in an
abstract vector space. Moreover, the
role of linear operators clearly ap-
pears as soon as one tries to compute
the average value of physical observ-
ables related to the polarization of a
photon. 

The lesson we learn from the
physics of polarized photons goes
well beyond the description of a sim-
ple two-state system. This back-
ground permits to introduce some
ideas of much wider validity, namely
the idea of amplitude, the general
meaning of orthogonality between
physical states and the quantum de-
scription of measuring processes. By
taking advantage of these concepts,
the transition from the case of polar-

ized photons to an arbitrary physical
system is made quite natural.

Actually, we simply sketch the log-
ical path one should follow to make
students familiar with what Sakurai
(Sakurai 1985) called the “quantum-
mechanical” way of thinking.

The following material is reason-
ably self contained, however we shall
often rely on ref. (Ghirardi, Grassi &
Michelini 1995 and 1997) from which
the reader can grasp the qualitative
ideas underlying the superposition
principle. Another recent work pre-
sents in detail the curricular guideline
for the introduction in secondary
school of the quantum mechanics for-
malism (Ragazzon 2000). The same
references can be consulted for any
detail we skip in the present work. 

2. Physical states, amplitudes and
vectors. To introduce the idea that
quantum-mechanical states are con-
veniently represented as vectors in an
abstract vector space, let us consider
the experimental apparatus shown in
Figure 1. Basically, it consists of two
polaroids with their pass directions
along the unit vectors u and v. Our
attention will be focused on the en-
semble Γ of photons filtered by the
first polaroid. We know (Ghirardi,
Grassi & Michelini 1995 and 1997)
that any photon in this ensemble has
a well defined physical property of
polarisation: that of going undis-
turbed through a second polaroid
with the same pass direction u. How-
ever, in the arrangement of Figure 1,
the second polaroid is oriented along
the arbitrary direction v. In such con-
ditions we can only ask for the prob-
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ability P(u,v) that our photons sur-
vive the second polaroid B and trig-
ger the detector D. According to
Malus law, the ratio of incident to
transmitted light intensity of a beam
of linearly polarized light which goes
through polaroid B is given by
Itr/Iin=cos2ϑ, =, where θ is the angle
between the light polarization and
the preferred direction of the po-
laroid. The ratio Itr/Iin can be consid-
ered as the ratio of transmitted to in-
cident number of photons. Obvious-
ly, this is nothing but the probability
we are looking for, thus we can write

P(u, v) = cos2 θ = (u·v)2 (1)

For any preferred direction v, the
unit vector u dictates the statistical
behaviour of the photon. If we accept
that our predictions are unavoidably
of statistical nature, then the unit vec-
tor u provides us with the complete
description of the photons contained
in Γ. Therefore, the state of a linearly
polarized photon is represented by a
vector in a two dimensional space.

The vector v can be used to represent
the state of a photon surviving the
crossing of polaroid B; thus, if detec-
tor D is triggered, we can say that our
measure has induced a transition
from state u to state v. Relation (1)
gives us a nice prescription to com-
pute the probability for this transi-
tion: it suffices to square the scalar
product of the vectors describing the
states of the photon before and after
the measure.

As for any vector in a two-dimen-
sional space, the state u can be writ-
ten as a linear combination of two
mutually orthogonal unit vectors, call
them H and V:

u = ψ1 H + ψ2 V,
ψ1

2 + ψ2
2 = 1

(2)

where the components ψ1 and ψ2 are
usually referred to as “amplitudes”,
obeying the “normalization” condi-
tion. Since H and V are unit vectors,
they also represent two possible states
of a linearly polarized photon. There-
fore, the vector relation (2) can be re-
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Figure 1. A: polaroid with pass direction along the unit vector u. B: polaroid with pass di-
rection along v. D: photon detector. Γ: ensemble of photons filtered by A; the photons of Γ
are characterized by a well defined physical property: the property that would enable them
to go undisturbed through a second polaroid oriented along u. 

A B

D
u

v

Γ



garded as the quantitative implemen-
tation of the superposition principle
for the polarization states of a pho-
ton. As far as the amplitudes are con-
cerned, notice that ψ1 =  H·u and  ψ2 =
H·v. From equation (1), we then real-
ize that ψ1

2 and ψ2
2 give the probabili-

ty that a photon from ensemble Γ
triggers detector D when the second
polaroid is oriented along the “hori-
zontal” or “vertical” direction respec-
tively. With a little abuse of language,
we can say that ψ1

2 is the probability
of finding a photon in the state H,
while ψ2

2 gives the probability of find-
ing a photon in the state V. Obvious-
ly, such a statement makes sense only
when the second polaroid is properly
oriented, otherwise the transition to
state H or V cannot take place.

Formally, equation (2) has been
obtained in a trivial way. However its
physical content is far from being ob-
vious. Roughly speaking, one can say
that “quantum interference” emerges
from the fact that our photons behave
as if they were in two distinct states,
H and V, characterized by mutually
exclusive physical properties. Clearly,
this is a genuine consequence of the
superposition principle, with no clas-
sical counterpart. Following J. Bell
we could also say that the symbol “+”
appearing in equation (2) is concep-
tually different from “either….
or….”. Further illuminating com-
ments on this point can be found in
Ghirardi, Grassi & Michelini 1995
and 1997.

Let us now push our formalism a
little further. For later convenience, it
is useful to apply decomposition (2) to

vector v, representing the state of the
photons after the second polaroid:

v = ψ1’ H + ψ2’V. (3)

The probability P(u,v) can thus be
written as

P(u, v) = (u·v)2 = (ψ1’ψ1 + ψ2’ψ2)
2. (4)

This formally trivial result shows
that we can freely switch from a vec-
tor description of states to a “repre-
sentation” of them in terms of ampli-
tudes. In particular, any state of the
photon can be represented by a pair
of amplitudes; moreover, using equa-
tion (4), we can handle amplitudes to
compute all transition probabilities
relevant to our system. Here, we have
deliberately avoided talking about
complex amplitudes, since they in-
volve no new physical idea. At any
rate, complex amplitudes can be
straightforwardly introduced by ex-
tending the previous considerations
to the case of elliptically polarized
photons.

The foregoing results can be gen-
eralized to more complex systems in a
rather natural fashion. The strategy
we suggest is to introduce at this stage
the general concept of orthogonality
between physical states. First, recall
(Ghirardi, Grassi & Michelini 1997)
that a state is defined by the proper-
ties that can be assigned with certain-
ty to a physical system. Keeping this
in mind, the following definition
makes sense: two states are said to be
orthogonal if they are characterized
by mutually exclusive physical prop-
erties. The polarization states H and
V are an example of “physically” or-
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thogonal states: if a photon has the
property of surviving a polaroid ori-
ented along the horizontal (vertical)
direction, then we can surely exclude
that it has the property of going
through a vertically (horizontally) ori-
ented polaroid. From our definition,
it follows that any measuring process
can be regarded as a “factory” of or-
thogonal states. The general formal-
ism of Quantum Mechanics can be
obtained by combining together the
concept of amplitude and the defini-
tion of physically orthogonal states.
One expects that the transition prob-
ability from one superposition (ψ1,
ψ2, ...,ψi,....) to a second superposi-
tion (ψ’1 ,ψ’2, ...,ψ’i , ....) is obtained
from equation (4) by simply letting
the index of the amplitudes run from
i=1 to i=N, where N is the number of
states we are superimposing. 

A diffraction grating is an ideal
tool to show that Nature actually
forces us to consider the superposi-
tion of an arbitrary number of or-
thogonal states. We consider it rele-
vant to have made plausible the idea
that “array of amplitudes”, together
with their scalar products, provide us
with a useful bookkeeping device to
incorporate all the information we
need about a physical system. 

3. Linear operators and physical ob-
servables. In the conventional for-
malism of quantum mechanics, any
physical observable is represented by
a linear and hermitean operator. The
aim of this section is to make this con-
nection as natural as possible. The
first step, of course, is to get some fa-

miliarity with linear operators. In our
opinion, it is better to avoid a formal
and rigorous treatment of this ab-
stract topic. Rather, one can start by
simply writing on the blackboard an
object like a b. (a sequence of two
vectors followed by the symbol of
scalar product). At a first sight our
new object is rather mysterious.
However, one can discover its prop-
erties by writing it to the left of an ar-
bitrary vector c. The result of the op-
eration is a b.c. Since b.c is just a num-
ber, we realize that our guy ab. “eats”
vectors and produces new vectors
proportional to a.

After some experience with “op-
erators” of the previous type, one can
introduce linear combinations of
them. In particular, let us define the
operator:

Ô = λ1 a a · + λ2 b b · (5)

where a and b are two orthogonal
unit vectors a · a = b · b = 1, a · b = 0.
The action of the operator can be un-
derstood by writing its expression (5)
to the left of an arbitrary vector c:

Ô c = (λ1 a a · + λ2 b b ·)c = 
λ1 (a ·c) a + λ2 (b · c) (6)

The geometrical interpretation of
this result is clear. First, the operator
projects the input vector c along the
orthogonal directions a and b; such
projections are then multiplied by the
constants λ1 and λ2; finally, the new
projections are summed to produce
the output vector. For later conve-
nience, it is instructive to apply the
same operator to vectors a and b. As
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far as vector a is concerned, we ob-
tain Ôa=λ1aa·a+λ2bb·a=λ1a. The re-
sult is nothing but the same vector a
multiplied by the constant λ1: the
particular vector a then obeys the
simple transformation law: a→→ λ1 a.
Of course, one usually expresses this
by saying that a is an eigenvector of
the defined operator with eigenvalue
λ1. In a similar way we obtain that b is
another eigenvector with the scalar λ2
as its associated eigenvalue:

Ô b = λ2 b. (7)

We have now to establish the con-
nection between linear operators and
physical observables. In the context
we are dealing with, the only reason-
able observables are the polarizations
of photons. To say it differently, we
can only check whether a photon is
polarized along an arbitrary direction
v or not (Ghirardi, Grassi & Michelini
1995 and 1997). A suitable measuring
apparatus is sketched in Figure 2; it is

composed by a birefringent crystal
which splits a beam of photons in a
pair of secondary beams with polar-
izations along the mutually orthogo-
nal directions v1 and v2 . The crystal is
followed by two photon detectors,
one for each secondary beam. The
apparatus is then supplemented by an
index with two “positions” λ1 and λ2.
The index is brought to the position
λ1 (λ2 ) if the detector D1 (D2) is trig-
gered. The outcome of our measure-
ment is a random variable, call it λ,
which can take only two values, λ1
and λ2. 

In dealing with a random variable,
we are usually interested in its mean
value. The formalism of the previous
section enables us to compute the
main value of observable λ with no
difficulty:

‹ λ › = u · Ôλ u. (8)

It should be clear that operator
Ôλrepresents a compact and complete
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Figure 2. An  ideal birefringent crystal splits a beam of photons in a pair of secondary beams
with mutually perpendicular polarizations v1 and v2. This well known property of birefrin-
gent crystals can be used to “measure” the polarization of a photon. If the incident particle
is polarized along the  v1 (v2) direction, then detector D1 (D2) is triggered and the pointer is
set  in position  λ1 (λ2).
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description of the measuring apparatus
shown in Figure 2: the possible out-
comes of the measure are the eigenval-
ues of the operator, while its eigenvec-
tors are the possible states in which we
can find the photon after the measure.

Once again, it is crucial to realize
that our results are not restricted to
the simple case of linearly polarized
photons (Ragazzon 2000).

The arguments can be repeated
for a general physical system, where
the states are represented by n-di-
mensional array of amplitudes. 

Our discussion about linear oper-
ators and physical observables leaves
some fundamental questions without
a satisfactory answer. In particular,
how can we find the possible values
of a physical observable? Further-
more, if such values are unknown,
how can we define (and use) the cor-
responding linear operators? To say it
differently: where does the impor-
tance of linear operators come from?
To answer these questions, we have to
keep in mind equation (8) which es-
tablishes a simple relation between
the average value of a physical ob-
servable and its corresponding opera-
tor. In addition, we have to recall that
the average values of physical observ-
ables are assumed to obey the laws of
classical Physics, at least in some ap-
propriate limiting situation. This
“matching requirement”, together
with equation (8), provides a set of
conditions which must be fulfilled by
the linear operators describing the
observables of a physical system.
Usually, these constraints are suffi-
cient to specify the action of an oper-
ator and to single out its eigenvectors

and eigenvalues. In short, the basic
role of linear observables stems from
the fact that they represent an effi-
cient tool to “quantize” a system, that
is, to accomplish the transition from
classical to quantum Physics.

4. A teaching experimentation on
the proposed formulation. A four-
year experimentation has been car-
ried out on the most delicate part of
the formulation mentioned above for
the introduction of the basic ideas of
Quantum Physics, connected to the
formalism describing it. Such experi-
mentation has always involved the
last class of liceo1 and it has been car-
ried out by studying the interaction of
the light with polarizers and birefrin-
gent crystals. The experiments with
polarizing filters were aimed to recog-
nize that the property of linear polar-
ization according to a given direction
is incompatible with the polarization
in any other (non orthogonal) direc-
tion. The experiments with birefrin-
gent crystals have been proposed to
stress the meaning of this conclusion,
thus supplying a wider phenomeno-
logical base and allowing at the same
time the discussion around the con-
cepts of quantum indeterminism, the
principles of complementarity and in-
determination and the non-locality of
quantum phenomena. All this has
been aimed at helping the students
understand the Superposition Princi-
ple according to what has been pro-
posed in (Ghirardi, Grassi & Miche-
lini 1995 and 1997). The experiments
have been carried out from the
teacher’s desk, involving the students
with the only available device. 
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An iconographic representation of
the situations and results of the inter-
action of the light with polarizers and
birefringent crystals has been pro-
posed as an element of conceptual
synthesis, to be gradually built up by
following the results of the macroscop-
ic experiments (out of a large number
of photons) Figure 3 (Ghirardi, Grassi
& Michelini 1995 and 1997).

The class activity has been carried
out with cards showing the schemes
of the studied experimental contexts
in order to create a synthesis of the
results with respect to intensity and
polarization of the light transmitted
by sequences of two or more parallel
polaroids, crossed or placed in differ-
ent angles, affected by a beam of light
or similar situations with birefringent
crystals. Every scheme was associated
to some close-answers questions or to

some tables where the results of the
experiments could be reported, or to
some open-answer questions where
the students made their hypotheses
and the partial conclusions emerged
during their class discussions. The
cards had a triple aim: quantitative
link to the studied phenomenology,
summary of the cases related to the
interaction between photons with po-
laroid and birefringent crystals and,
last but not least, collection of the
conceptual path followed by each
student.

During the experimental phase,
the students have increasingly elabo-
rated and discussed several hypothe-
ses. As previously foreseen – and in
accordance with the objectives of the
teaching proposal hereby presented-
some concepts emerged, as far as the
interpretation of the behaviour of
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Figure 3. Exemplification of the iconographic representation used.   
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each single photon with respect to the
observed phenomena and, most of
all, as far as the photons polarized at
45°. The most common hypotheses
about the statistical mixture of states
and double property of polarization
for a single photon paved the way to
the comprehension of the quantic
state of the photon and of its changes
due to the interaction.

5. Conclusions. After the experimen-
tation discussed so far, some signifi-
cant conclusions can be drawn as far
as this proposal is concerned. The
analysed phenomenology is within
the capacity of the students and it can
be experimented in the classroom by
means of commercial instrumenta-
tion, which strongly affects the con-
ceptualization phase. The icono-
graphic representation helps the elab-
oration of the concepts and the ex-
ploration of ideas, even though it
must not be forgotten that, besides
the description of the phenomena, it
also implies their interpretation.
However, generally speaking, it helps
the students as far as the elaboration
and expression of their concepts. All

the students realized the possibility of
interpreting the intensity of transmis-
sion-absorbtion in terms of relative
probability of the single photon.
More than the 80% of them has
demonstrated to be able to master the
passage from the real experiment to
the ideal one, as a consequence of a
deep mastering of the whole phenom-
enological experimentation carried
out. Mostly (more than the 60%) the
students proved to be able to under-
stand the concept of quantum state,
the incompatibility of conjugated
properties, the non-locality and the
quantum indeterminism, even if in
different ways and with different
awareness. The comparison between
classical physics and quantum physics
should be further investigated by
means of a critical revision (from his-
torical point of view as well) of the
new quantum concepts. The experi-
mentation unveiled the need of a
wider phenomenological base for
the generalization of the approach
and the modes allowing the passage
to the subsequent formal plan, as al-
ready explained in the previous
paragraphs. 
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Notes

1 The experimentation has been carried out dur-
ing all the four years at Liceo Scientifico G.

Marinelli of Udine, between May and June. 
It required seven working-hours-in the laborato-
ry plus one hour for the final test.
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