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Abstract. We review some recent results on the identification of an open

crack in a straight elastic beam with smooth variable profile, either under axial

or in-plane bending infinitesimal vibration, from the knowledge of a suitable

pair of eigenfrequencies. We investigate on sufficient conditions for the unique

identification of the crack and we present a constructive algorithm based on

the λ-Curves Method. We also discuss a generalization of the methodology to

rods with piecewise smooth profile.
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1. Introduction. The identification of cracks in one-dimensional ele-
ments by eigenfrequency data is a topic which has attracted great in-
terest in the scientific community in the last thirty years. We refer, for
example, to the papers by Hearn & Testa (1991), Carden & Fanning
(2004), Khoo et al. (2004), Humar et al. (2006) for an overview on
modal analysis techniques for damage detection in structures.

Most of the research work concerns with the identification of open
cracks in uniform beams, see, among other contributions, Adams et al.
(1978), Springer et al. (1988), Ruotolo & Surace (1997), Capecchi &
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Vestroni (2000), Cerri & Vestroni (2000), Vestroni & Capecchi (2000),
Teughels et al. (2002), Gladwell (2004), Dilena & Morassi (2009),
Rubio (2009), Pau et al. (2011), Greco & Pau (2012), and Caddemi &
Caliò (2009, 2014) for crack identification by frequency and modal dis-
placement data. Beams with uniform cross-section allow to express the
frequency equation in closed-form, and this property makes the inverse
problem simpler and more manageable, both from the theoretical and
the numerical point of view. In particular, a rather complete theory is
now days available for the identification of a single open crack in uni-
form rods or beams when the damage is small, that is when the damaged
system can be considered as a perturbation of the undamaged one, see
Narkis (1994), Morassi (2001), Dilena & Morassi (2004). Regarding
the identification of a finite number of small cracks in rods and beams
using natural frequencies, the reader can find an exhaustive analysis of
the literature and an original reconstruction algorithm in the interesting
article by Shifrin (2016).

The problem of determining a single not necessarily small open crack
in a longitudinally vibrating uniform rod by frequency data has been
recently solved in Rubio et al. (2015a). The crack is modelled by a
linearly elastic translational spring located at the damaged cross-section.
It was proved in Rubio et al. (2015a) that the knowledge of the first
(positive) natural frequency of a free-free rod and the first antiresonant
frequency of the driving-point frequency response function of the rod
evaluated at one end of the rod uniquely determines the position and
the severity of the crack.

Few research works focussed on the identification of not necessarily
small cracks in non-uniform rods and beams, see, for example, Liang et
al. (1992) and Chaudhari & Maiti (2000). In Rubio et al. (2015b),
the λ-Curves Method was introduced as useful tool in formulating and
solving the inverse problem within this more general context. The λ-
Curves Method is mainly based on the study of some refined properties
of the eigenfrequencies as functions of the position and severity of the
crack, and it leads to a constructive algorithm for solving the diagnostic
problem. In this paper we review some recent results we have obtained
along this line of research, and we present an extension of the method
to axially vibrating rods with piecewise regular profile. The method
has been tested on an extended series of numerical simulations, and its

stability to errors has been checked both for noisy and experimental data.
The interested reader is refereed to the papers Rubio et al. (2015b, 2018,
2020) for more details on theoretical aspects and numerical simulations.

2. Formulation of the inverse problem. Let us consider a longitudi-

nally vibrating free-free thin rod of length L. Denote by A = A(z) the
area of the transversal cross-section of the rod, z ∈ [0, L], and assume
that A is a strictly positive, continuously differentiable function in [0, L].
The (constant) Young’s modulus of the material is denoted by E, E > 0;
γ is the (constant) volume mass density, γ > 0. The rod has a single
crack at the cross-section of abscissa zd, with 0 < zd < L. The crack is
assumed to remain open during vibration and it is modelled as a longi-
tudinal linearly elastic spring with stiffness K, see Freund & Herrmann
(1976), Adams et al. (1978) and Cabib et al. (2001). The value
of K depends on the geometry of the cracked cross-section and on the
material properties of the beam. We refer to section 5.2 for a specific
expression in the case of rectangular cross-section and transversal crack.
The free undamped longitudinal vibration of the rod, with radian fre-
quency ω and spatial amplitude u = u(x), is governed by the following
dimensionless eigenvalue problem




(au′)′ + λau = 0, x ∈ (0, s) ∪ (s, 1),

[[au′(s)]] = 0,

K[[u(s)]] = a(s)u′(s),

a(0)u′(0) = 0 = a(1)u′(1),

(2.1)

(2.2)

(2.3)

(2.4)

where, for a given x0 ∈ [0, 1], x = z
L , s =

zd
L and

A(x) = A(z), a(x) =
A(x)

A(x0)
, K =

KL

EA(x0)
∈ (0,∞), λ =

γL2ω2

E
.

(2.5)
Moreover, we define [[u(s)]] = (limx→s+ u(x) − limx→s− u(x)). Under
the above assumptions, there exists a numerable sequence of real, non-
negative eigenvalues {λn}∞n=0 of (2.1)–(2.4) with accumulation point at
+∞. The lower eigenvalue λ0 = 0 corresponds to a rigid body motion
u(x) = const, and it is insensitive to damage. We are now in position
to state our first result. In particular, to simplify the presentation, we
consider a rod with symmetric profile.
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Property 1. Let a = a(x) be a strictly positive and continuously
differentiable function in [0, 1], with a(x) = a(1− x). The measurement
of the first two positive natural frequencies of (2.1)–(2.4) allows for the
unique determination of the severity K and the location s of the crack,
up to the symmetric position (1 − s). The identification procedure is
constructive.

3. The λ-Curves Method. In order to prove Property 1 via the λ-
Curves Method we need some auxiliary results. First, we found con-
venient to formulate the crack identification problem as an equivalent
problem of determining the position and the intensity of a point mass in
a rod. The equivalence between the eigenvalue problem for the cracked
rod (2.1)–(2.4) and the eigenvalue problem for a longitudinally vibrating
rod carrying a point mass at the cracked cross-section is as follows. Let
us denote by (λ, u) an eigenpair of (2.1)–(2.4). If λ > 0, then λ is an
eigenvalue of the problem




(bw′)′ + λbw = 0, x ∈ (0, s) ∪ (s, 1),

[[w(s)]] = 0,

[[bw′(s)]] = −λmw(s),

w(0) = 0 = w(1),

(3.1)

(3.2)

(3.3)

(3.4)

where

w = au′ in (0, s) ∪ (s, 1), b = a−1 in ∈ [0, 1], m = K−1. (3.5)

Conversely, if (λ,w) is an eigenpair of the problem (3.1)–(3.4), then λ,
λ > 0, is an eigenvalue of the problem (2.1)–(2.4) with eigenfunction u
such that

u = bw′ in (0, s) ∪ (s, 1), a = b−1 in (0, 1), K = m−1. (3.6)

In the sequel, basing on the equivalence between the eigenvalue prob-
lems (2.1)–(2.4) and (3.1)–(3.4), we reformulate our inverse problem of
determining a crack in an axially vibrating (symmetric) free-free rod as
the inverse problem of determining the intensity and location of a point
mass in an axially vibrating (symmetric) simply supported rod.

In order to study the diagnostic problem we shall often compare the
eigenvalues of the problem (3.1)–(3.4) for finite no-vanishing m and for

s ∈ (0, 1), with those obtained by taking m = 0 in (3.1)–(3.4). We shall
denote by (λU

n , w
U
n ) the nth eigenpair of the corresponding unperturbed

(or uncracked) problem. By the variational and Maximum-Minimum
formulation, it can be deduced that λU

n−1 ≤ λn ≤ λU
n , for every n ≥ 1,

where we have defined λU
0 = 0.

Our identification algorithm is based on qualitative properties of the
functions λn = λn(s, ·) and λn = λn(·,m), that is the λ-m and λ-s curves,
respectively, where λn is an eigenvalue of (3.1)–(3.4) for a given coeffi-
cient b. It can be shown that the study of these properties strongly relies
on the explicit expression taken by the first-order eigenvalue derivatives
with respect to m and s. More precisely, let (λ,w = w(x)) be an eigen-
pair of (3.1)–(3.4). Then, the function λ = λ(s,m), for s ∈ [0, 1] and
m ∈ [0,∞), is a continuous function with continuous first order partial
derivatives, and we have

∂λ

∂s
= −λ

mw(s)(w′(s+) + w′(s−))

mw2(s) +
∫ 1
0 bw2

,
∂λ

∂m
= −λ

w2(s)

mw2(s) +
∫ 1
0 bw2

,

(3.7)

where we have defined w′(s+) = limx0→s+

(
dw(x;s,m)

dx |x=x0

)
and w′(s−) =

limx0→s−

(
dw(x;s,m)

dx |x=x0

)
.

The dependence of the eigenvalue on the parameter m, for a given
position s of the point mass, is analyzed first. The following properties
hold:

i) If wU
n (s0) = 0 for some s0 ∈ [0, 1], then λn(s0,m) = λU

n for every
finite positive m.

ii) If wU
n (s0) ̸= 0 for some s0 ∈ (0, 1), then λn = λn(s0,m) is a

monotonically decreasing function of m in [0,∞).
iii) If λn(s0,m0) = λU

n for some s0 ∈ [0, 1] and m0 ∈ (0,∞), then
wU
n (s0) = 0.
iv) If wn(s0; s0,m0) = 0 for some s0 ∈ [0, 1] and m0 ∈ (0,∞), then

wU
n (s0) = 0.
A key result concerns the critical points of the λ-s curves. The result

is stated here only for the first two eigenvalues of (3.1)–(3.4), since only
this set of spectral data will be used to identify the point mass. Let
m be given, 0 < m < ∞. Then λ1 = λ1(s) is a strictly decreasing
function in (0, 1/2), and there exists a unique s̃ ∈ (0, 1/2) such that
∂λ2
∂s (s̃) = 0, that is λ2 = λ2(s) is a strictly decreasing function and a
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strictly increasing function in (0, s̃) and in (s̃, 1/2), respectively. Recall
that λi(s) = λi(1− s) for s ∈ [0, 1].

We are now in position to present the identification algorithm. The
main steps of the constructive procedure are as follows. Input data
{λ1, λ2} are chosen such that 0 < λ1 < λU

1 , λU
1 ≤ λ2 ≤ λU

2 . Note that
the upper bound for λ1 is strict, namely the first eigenvalue is always
’sensitive’ to the point mass m. If λ2 = λU

2 , then the point mass is
located at s = 1/2 and m can be uniquely determined by solving the
equation λ1 = λ1(1/2,m). Therefore, in the sequel we shall consider the
non-trivial condition λ2 < λU

2 and, by symmetry hypothesis, we shall
assume s ∈ (0, 1/2).

We start determining the values m−
1 , m

−
2 , 0 < m−

i < ∞, i = 1, 2,
of the parameter m such that λ1 = λ1(1/2,m

−
1 ), λ2 = λ2(s2min,m

−
2 ),

where s2min ∈ (0, 1/2) is the unique point such that
∂λ2(s,m

−
2 )

∂s |s=s2min =
0. Note that m−

1 �= m−
2 and max{m−

1 ,m
−
2 } < m. We distinguish two

main cases.
Case 1. If

max{m−
1 ,m

−
2 } = m−

1 , (3.8)

then we determine the curve y = λ2(s,m
−
1 ) in [0, 1], see Figure 1 (upper).

Let us consider the curves y = λ2(s,M) for M > m−
1 , M not too large.

Let us denote by P2r(M) the intersection point between y = λ2(s,M)
and y = λ2, with the abscissa s(P2r(M)) such that s(P2r(M)) > s2min.
Moreover, let us denote by P1(M) the unique intersection point be-
tween y = λ1(s,M) and y = λ1, with s(P1(M)) < 1/2. Then, it can

be proved that there exists a unique value of M, say M̃, such that
s(P2r(M̃)) = s(P1(M̃)). The value M̃ is the intensity of the mass m

and s = s(P1(M̃)) is its position. Case 2. If

max{m−
1 ,m

−
2 } = m−

2 , (3.9)

we determine the curve y = λ1(s,m
−
2 ), denoting by P1(m

−
2 ) the unique

intersection point between y = λ1(s,m
−
2 ) and y = λ1, with abscissa

s1 = s(P1(m
−
2 )) ∈ (0, 1/2). At this stage, we distinguish two additional

subcases. Case 2.- a): Assume that s2min ≤ s1. If s2min = s1, then
the problem is solved. If s2min < s1, we can repeat the procedure used
in Case 1, and the inverse problem has a unique solution, see Figure
1 (lower). Case 2.- b): If s2min > s1, then there exists m∗ > m−

2

Figure 1: The λ–curves identification algorithm based on first two reso-
nant frequencies: Case 1 (upper) and Case 2 - Subcase a (lower).
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2 )) ∈ (0, 1/2). At this stage, we distinguish two additional

subcases. Case 2.- a): Assume that s2min ≤ s1. If s2min = s1, then
the problem is solved. If s2min < s1, we can repeat the procedure used
in Case 1, and the inverse problem has a unique solution, see Figure
1 (lower). Case 2.- b): If s2min > s1, then there exists m∗ > m−

2

Figure 1: The λ–curves identification algorithm based on first two reso-
nant frequencies: Case 1 (upper) and Case 2 - Subcase a (lower).
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such that the intersection point P2l(m
∗) between y = λ2(s,m

∗) and
y = λ2 satisfies s(P2l(m

∗)) < s(P1(m
−
2 )), where P1(m

−
2 ) is the unique

intersection point between y = λ1(s,m
−
2 ) and y = λ1. By decreasing

the mass value from m∗ to m−
2 , there exists a unique value, say M̃, such

that s(P2l(M̃)) = s(P1(M̃)), and the identified parameters are m = M̃
and s = s(P1(M̃)).

4. The use of antiresonant eigenfrequency data. Crack at any one of
a set of symmetrically placed points of a symmetrical structure produce
identical changes to natural frequencies. Therefore, as it was shown in
Section 3, the measurement of the first two (positive) natural frequencies
of a free-free symmetric rod determines the location of the crack up to
a symmetric position. To remove this intrinsic indeterminacy of the in-
verse problem, appropriate use of antiresonant frequency measurements
can be made. Referring to Rubio et al. (2015b) for more details, the
following result can be proved.

Property 2. Let a = a(x) be a strictly positive and continuously dif-
ferentiable function in [0, 1], with a(x) = a(1 − x). The measurement
of the first positive natural frequency of (2.1)–(2.4) and of the first an-
tiresonance of the driving point frequency response function of the rod
evaluated at one free end allows for the unique determination of the
severity K and the location s of the crack. The identification procedure
is constructive.

Let H(
√
λ, xi, x0) be the frequency response function (FRF) of the

axially vibrating rod in (2.1)–(2.4), where xi, xo are the abscissa of the
excitation point and measurement point, respectively. When xi = xo =
0, the antiresonances of the FRF H(

√
λ, 0, 0) are the (square root of

the) eigenvalues of the rod (2.1)–(2.4) with the homogeneous Neumann
end condition a(0)u′(0) = 0 replaced by the Dirichlet end condition
u(0) = 0. Therefore, the main point is the study of the qualitative
properties of the λ-m and λ-s curves for the eigenvalue problem for
the cracked supported-free rod. Most of the arguments adopted in the
proof of Property 1 can be reproduced, with proper modifications, and
the identification procedure can be adapted to the present case. We
only mention the key fact that, for any given severity of the crack, the
first antiresonance λ1A = λ1A(s) is a strictly increasing function in the
interval (0, 1). It is exactly the reduced oscillatory character of λ1A with

respect to the second natural frequency of the rod λ2 that allows the
removal of the second solution caused by the symmetry.

Previous results can be generalized to Sturm-Liouville operators more
general than those appearing above. Let us consider, for example, the
cracked rod under free-free end conditions introduced at the beginning of
Section 2. Here, differently from what previously assumed in (2.1)–(2.4),
the axial stiffness a = a(x) is not necessarily proportional to the linear
mass density ρ = ρ(x) of the rod, and the free undamped vibration is
governed by the eigenvalue problem




(au′)′ + λρu = 0, x ∈ (0, s) ∪ (s, 1),

[[au′(s)]] = 0,

K[[u(s)]] = a(s)u′(s),

a(0)u′(0) = 0 = a(1)u′(1).

(4.1)

(4.2)

(4.3)

(4.4)

The functions a(x) and ρ(x) are assumed to be strictly positive continu-
ously differentiable functions, satisfying the symmetry condition a(x) =
a(1− x) and ρ(x) = ρ(1− x) in [0, 1]. Most of the steps in the previous
analysis can be repeated, and it can be shown that Properties 1 and 2
hold also in this case.

5. Extension to rods with piecewise-smooth profile.
5.1 Formulation of the problem and main result. The above results have
been proved under the assumption that the rod profile is regular (con-
tinuous and continuously differentiable, at least) and symmetric with
respect to the mid-point of the rod axis. We will show below that these
two a priori assumptions can be removed in proving Property 2.

Let us consider a longitudinally vibrating free-free straight thin rod
of length L. The rod is made by linearly elastic material with constant
Young’s modulus E, E > 0, and has uniform volume mass density γ,
γ > 0. Denote by A = A(z) the area of the transversal cross-section
of the rod, with A(z) ≥ A0 for z ∈ [0, L], where A0 > 0 is a constant.
We shall assume that A = A(z) is piecewise-C1-regular in [0, L], that is,
A and its first derivative A′ are continuous functions in [0, L] with the
exception of the points {ξ}Ni=1, 0 < ξ1 < ξ2 < ... < ξN < L, in which the

left and right limit of A and A′ there exist and are finite:

lim
z→ξ̂±i

A(z) = A(ξ±i ), lim
z→ξ̂±i

A′(z) = A′(ξ±i ), (5.1)
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lim
z→ξ̂±i
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i = 1, ..., N . The rod has a single crack at the cross-section of abscissa
zd, 0 < zd < L. The crack is assumed to remain open during vibration
and it is modelled as a longitudinally linearly elastic spring with stiffness
K̂.

The weak formulation of the eigenvalue problem, in dimensionless
form, with radian frequency ω and spatial amplitude û = û(z), is the
following: to determine (λ, u = u(x)), λ ∈ R and u ∈ H1(0, s)∪H1(s, 1)\
{0} such that

∫ 1

0
au′ϕ′dx+K[[u(s)]] · [[ϕ(s)]] = λ

∫ 1

0
auϕdx (5.2)

for every ϕ ∈ H1(0, s) ∪H1(s, 1), where s = zd
L ∈ (0, 1),

K =
K̂L

EA(x0)
∈ (0,∞), λ =

γL2ω2

E
, ξi =

ξ̂i
L
, i = 1, ..., N, (5.3)

and (·)′ = d(·)
dx means x-differentiation. Let us noticed that, for 0 = ξ0 <

ξ1 < ... < ξi ≤ s ≤ ξi+1 < ... < ξN < ξN+1 = 1, the first integral on the

left end side of (5.2) is understood as
∫ 1
0 (...) =

∑i−1
j=0

∫ ξj+1
ξj (...)+

∫ s
ξi(...)+∫ ξi+1

s (...)+
∑N

j=i+1

∫ ξj+1
ξj (...). Under the above assumptions, there exists

a numerable sequence of real, non-negative eigenvalues {λn}∞n=0 of (5.2)
such that 0 = λ0 < λ1 < λ2 < ... < λn < ... and limn→∞ λn = +∞.

As before, we introduce the antiresonant frequencies of the driving-
point FRF H(ω; 0, 0) of the cracked rod evaluated at the end cross-
section x = 0. These antiresonances are the eigenvalues λA of the fol-
lowing problem: to determine (λA, uA = uA(x)), λA ∈ R and uA ∈
H1

(0)(0, s) ∪H1(s, 1) \ {0} such that

∫ 1

0
au′Aϕ

′dx+K[[uA(s)]] · [[ϕ(s)]] = λA

∫ 1

0
auAϕdx (5.4)

for every ϕ ∈ H1
(0)(0, s)∪H1(s, 1), where H1

(0)(0, s) is the set of functions

belonging to H1(0, s) and vanishing at x = 0. We shall denote by 0 <
λ1A < λ2A < ... < λnA < ... the eigenvalues of (5.4), with limn→∞ λnA =
+∞.

We are now in position to state a generalization of Property 2.
Property 3: The measurement of the first (positive) natural frequency

λ1 of (5.2) and the first antiresonant frequency λ1A of (5.4) allows for

the unique determination of the position s and the severity K of a single
open crack in a piecewise-C1-regular rod. The identification procedure is
constructive.

The proof of Property 3 requires a certain amount of preliminary
work, and the derivation of some new mathematical tools respect to
the rod with smooth profile. In brief, the proof is based on two main
properties. First, as before, the eigenvalue problem for a cracked rod
with not smooth profile can be formulated as an equivalent problem for
a vibrating rod with a point mass m (= 1/K) at the position s. Second,
one can prove that the λ1-s curve, that is the function λ1 = λ1(·;m)
expressing the behavior of the first (positive) eigenfrequency of the free-
free cracked rod with respect to the variable s for a given value of m,
has exactly one critical point - actually, a minimum - inside the rod axis
interval. Moreover, the function λ1A = λ1A(s) is strictly increasing in
[0, 1) and ∂λ1A

∂s (0) > 0. It can be shown that these properties follow
from the weak formulation of the eigenvalue problem, which, unlike the
approach used in Rubio et al. (2015b) for rods with smooth coefficients,
allows to easily incorporate the discontinuities of the profile and makes
simpler the study of the dependence of the eigenfrequency data on the
damage parameters. We refer to Rubio et al. (2020) for details.

5.2 Applications. In order to test the effectiveness of identification to
errors on the data, the reconstruction procedure has been applied to
pseudo-experimental cases with noisy frequency values. A selected series
of results is presented and commented in the sequel.

The specimen is a free-free steel cracked rod with rectangular cross-
section of side B = 0.02 m (constant) and height H = H(z) given by

H(z) = H0

(
1

4

( z

L

)2
+ 1

)
, 0 ≤ z < Ls, (5.5)

H(z) = H0

(
1

4

( z

L

)2
+

5

4

)
, Ls < z ≤ L, (5.6)

where L = 1 m, Ls = 0.6 m and H0 = 0.02 m. The Young modulus and
Poisson ratio of the material are E = 207 GPa and ν = 0.3, respectively.
The rod has two symmetric transversal cracks, each with front parallel
to the side B, of depth d

2 = 4.12 mm each (K̂ = 1.4276 × 1010 N/m)
located at zd = 0.35 m from the left end.
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The results of damage identification for the perturbed data (f1)meas =
(1± k1)(f1)exact and (f1A)meas = (1± k2)(f1A)exact are shown in Table
1 (k1 = 6 ×10−4, k2 = 9 ×10−4) and in Table 2 (k1 = 2.5 ×10−4,
k2 = 4 ×10−4). An estimate of the crack depth, obtained from the
estimated stiffness K̂est via equations (5.7) and (5.8), is also provided.
Once the stiffness K̂ and the crack location s have been identified, the
crack depth can be determined by means of the explicit relationship be-
tween the crack depth and the stiffness K. In the present case, denoting
by d

2 the depth of each side crack, the stiffness K̂ of the elastic spring
simulating the damage is expressed as

K̂ =
EÂ(zd)

Lδl(ν;α)
, (5.7)

where (see Ruotolo & Surace (2004))

δl(ν;α) = 2
H(zd)

L
(1− ν2)(0.7314α8 − 1.0368α7 + 0.5803α6+

+ 1.2055α5 − 1.0368α4 + 0.2381α3 + 0.9852α2) (5.8)

and α = d
H(zd)

is the crack ratio. Therefore, from the identified values

of K̂ and s, by knowing H(zd)
L , it is possible, first, to determine δl(ν;α)

and, next, the crack depth d by inverting equation (5.8) with respect
to α. For usual values of ν (e.g., ν � 0.3), the function δl = δl(ν; ·) is
always uniquely invertible in the interval α ∈ [0, 1], but the interval in
which expression (5.8) is accurate is usually smaller.

The analysis of Tables 1–2 shows that the identification procedure
is sensitive to errors on the data, although the discrepancies in crack
depth estimation are significantly lower than those corresponding to the
stiffness predictions, being less than 5 per cent for both the specimens
whenever the lower error level is assumed. This different sensitivity is
due to the non-linear relationship (5.8) between the stiffness K̂ and the
crack depth. However, it should be also noticed that the amount of
absolute error that we have considered on the frequency data (e.g., 1−2
Hz on frequency values ranging from 1200 to 2500 Hz) corresponds to a
reasonable magnitude in concrete applications. It is expected that this
absolute error could be further reduced by simultaneously improving
the experimental procedure and the analytical processing of the data
acquired in a vibration test.
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The results of damage identification for the perturbed data (f1)meas =
(1± k1)(f1)exact and (f1A)meas = (1± k2)(f1A)exact are shown in Table
1 (k1 = 6 ×10−4, k2 = 9 ×10−4) and in Table 2 (k1 = 2.5 ×10−4,
k2 = 4 ×10−4). An estimate of the crack depth, obtained from the
estimated stiffness K̂est via equations (5.7) and (5.8), is also provided.
Once the stiffness K̂ and the crack location s have been identified, the
crack depth can be determined by means of the explicit relationship be-
tween the crack depth and the stiffness K. In the present case, denoting
by d

2 the depth of each side crack, the stiffness K̂ of the elastic spring
simulating the damage is expressed as

K̂ =
EÂ(zd)

Lδl(ν;α)
, (5.7)

where (see Ruotolo & Surace (2004))

δl(ν;α) = 2
H(zd)

L
(1− ν2)(0.7314α8 − 1.0368α7 + 0.5803α6+

+ 1.2055α5 − 1.0368α4 + 0.2381α3 + 0.9852α2) (5.8)

and α = d
H(zd)

is the crack ratio. Therefore, from the identified values

of K̂ and s, by knowing H(zd)
L , it is possible, first, to determine δl(ν;α)

and, next, the crack depth d by inverting equation (5.8) with respect
to α. For usual values of ν (e.g., ν � 0.3), the function δl = δl(ν; ·) is
always uniquely invertible in the interval α ∈ [0, 1], but the interval in
which expression (5.8) is accurate is usually smaller.

The analysis of Tables 1–2 shows that the identification procedure
is sensitive to errors on the data, although the discrepancies in crack
depth estimation are significantly lower than those corresponding to the
stiffness predictions, being less than 5 per cent for both the specimens
whenever the lower error level is assumed. This different sensitivity is
due to the non-linear relationship (5.8) between the stiffness K̂ and the
crack depth. However, it should be also noticed that the amount of
absolute error that we have considered on the frequency data (e.g., 1−2
Hz on frequency values ranging from 1200 to 2500 Hz) corresponds to a
reasonable magnitude in concrete applications. It is expected that this
absolute error could be further reduced by simultaneously improving
the experimental procedure and the analytical processing of the data
acquired in a vibration test.
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6. Bending vibrating beams In this section we briefly review the iden-
tification of a single open crack in a bending vibrating beam with vari-
able profile via the λ-Curves Method. The interested reader is referred
to Rubio et al. (2018) for precise statements of the results and details
of the proofs.

We assume that the crack occurs at the cross-section of abscissa zd,
with 0 < zd < L, where L is the length of a beam under simply sup-
ported end conditions. The crack is assumed to remain open during
the vibration and it is modelled as a massless rotational linearly elas-
tic spring with stiffness K, see Freund & Herrmann (1976). The free
undamped bending vibration of the beam with radian frequency ω and
spatial amplitude u = u(x) (x = z/L, z ∈ [0, L]) is governed by the
following eigenvalue problem (written in dimensionless form)




(ju′′)′′ − λρu = 0, in (0, s) ∪ (s, 1),

u(x) = u′′(x) = 0, at x = 0 and x = 1,

[[u(s)]] = [[(ju′′)(s)]] = [[(ju′′)′(s)]] = 0,

K[[u′(s)]] = j(s)u′′(s),

(6.1)

(6.2)

(6.3)

(6.4)

where s = zd/L, s ∈ (0, 1), K = KL/EI0, K ∈ (0,∞), λ = L4ω2/EI0
and I0 = CL4, with C > 0 a suitable absolute constant. Here, ρ = ρ(x)
is the mass density per unit length, and j = j(x) is the (dimensionless)
second moment of area about the axis through the centroid of the cross-
section, at right angles to the plane of vibration (the neutral axis). We
assume that j(x) and ρ(x) are positive regular functions in [0, 1], and
they are symmetric with respect to the mid-point of the beam axis.

The study of the inverse problem follows the lines of the correspond-
ing analysis for the axial vibration problem, albeit with significant dif-
ferences. The analysis is based on three main steps. First, it is shown
that the eigenvalue problem for the cracked beam (6.1)–(6.4) can be
transformed in an equivalent eigenvalue problem for a simply-supported
beam carrying a point mass m = 1/K at the cracked cross-section s,
with suitable bending stiffness and mass density coefficients. Therefore,
as in the axial vibration case, the crack detection problem is transformed
into the equivalent problem of determining the location s and magnitude
m of a point mass from a suitable pair of natural frequencies. In the sec-
ond step, we study the λ−m and λ−s curves. The analysis is still based
on the explicit determination of the eigenvalue derivatives with respect
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6. Bending vibrating beams In this section we briefly review the iden-
tification of a single open crack in a bending vibrating beam with vari-
able profile via the λ-Curves Method. The interested reader is referred
to Rubio et al. (2018) for precise statements of the results and details
of the proofs.

We assume that the crack occurs at the cross-section of abscissa zd,
with 0 < zd < L, where L is the length of a beam under simply sup-
ported end conditions. The crack is assumed to remain open during
the vibration and it is modelled as a massless rotational linearly elas-
tic spring with stiffness K, see Freund & Herrmann (1976). The free
undamped bending vibration of the beam with radian frequency ω and
spatial amplitude u = u(x) (x = z/L, z ∈ [0, L]) is governed by the
following eigenvalue problem (written in dimensionless form)




(ju′′)′′ − λρu = 0, in (0, s) ∪ (s, 1),

u(x) = u′′(x) = 0, at x = 0 and x = 1,

[[u(s)]] = [[(ju′′)(s)]] = [[(ju′′)′(s)]] = 0,

K[[u′(s)]] = j(s)u′′(s),

(6.1)

(6.2)

(6.3)

(6.4)

where s = zd/L, s ∈ (0, 1), K = KL/EI0, K ∈ (0,∞), λ = L4ω2/EI0
and I0 = CL4, with C > 0 a suitable absolute constant. Here, ρ = ρ(x)
is the mass density per unit length, and j = j(x) is the (dimensionless)
second moment of area about the axis through the centroid of the cross-
section, at right angles to the plane of vibration (the neutral axis). We
assume that j(x) and ρ(x) are positive regular functions in [0, 1], and
they are symmetric with respect to the mid-point of the beam axis.

The study of the inverse problem follows the lines of the correspond-
ing analysis for the axial vibration problem, albeit with significant dif-
ferences. The analysis is based on three main steps. First, it is shown
that the eigenvalue problem for the cracked beam (6.1)–(6.4) can be
transformed in an equivalent eigenvalue problem for a simply-supported
beam carrying a point mass m = 1/K at the cracked cross-section s,
with suitable bending stiffness and mass density coefficients. Therefore,
as in the axial vibration case, the crack detection problem is transformed
into the equivalent problem of determining the location s and magnitude
m of a point mass from a suitable pair of natural frequencies. In the sec-
ond step, we study the λ−m and λ−s curves. The analysis is still based
on the explicit determination of the eigenvalue derivatives with respect
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to the parameters s and m and on specific properties of the eigenpairs
of the cracked beam. Under a technical a-priori assumption on the ze-
ros of a suitable function determined in terms of the eigenfunctions of
the problem, the above properties are used in the third and last step
to define the constructive algorithm of the λ-Curves Method for solving
the inverse problem. More precisely, it is shown that the analogue of
Property 1 of the axial case is true, that is, the crack can be uniquely
determined, up to a symmetric position, from the knowledge of the first
two natural frequencies of the beam.

For the sake of completeness, we conclude this section by making
some remarks on the technical differences we have found in the present
analysis and in the study of the analogous inverse problem of detecting
a single open crack in a longitudinally vibrating rod with variable profile
considered in Section 3. A first hindrance is connected with the study
of qualitative properties of the eigenfunctions of the cracked beam, such
as, the number of zeros and interlacing properties between the zeros of
eigenfunctions and their derivatives. This study can be carried out in
the axial context by extending classical Sturm-Liouville techniques for
the undamaged rod to a rod with a crack. Sturm-Liouville methods are
not easily extendable to fourth order operators and, therefore, we were
forced to follow a different approach, mainly based on the study of the
oscillatory character of the statical Green’s function of the cracked beam.
A second obstruction is connected with the study of the qualitative
behavior of the λ–s curves. It can be shown that the argument used
in the second order case does not apply to the fourth-order case. The
technique we have adopted here is different and it is essentially based
on a deformation argument which allowed us to reduce the analysis to
the study of the zeros of a suitable function defined on the undamaged
configuration. It is precisely at this point that, in order to apply the
deformation argument, we have introduced a Vanishing Condition, that
is an a priori assumption on the zeros of a suitable function determined
in terms of the eigenfunctions of the cracked beam. It can be shown
that this assumption is actually a property of the problem in the case of
small damage (Rubio et al. (2018)). In addition, by means of a different
approach, it was shown that the Vanishing Condition can be omitted
when the simply-supported beam is uniform, without introducing any
restriction on the damage severity (Rubio et al. (2016)). Whether

the Vanishing Condition may or may not be definitively removed from
the analysis of the inverse problem remains an open question, at the
moment.

7. Conclusions This paper has been devoted to review some recent
results on the inverse problem of identifying a single open crack in a vi-
brating beam by minimal natural frequency and antiresonant frequency
data. The beam is considered with variable profile and the crack severity
is not necessarily small. Sufficient conditions for the unique identifica-
tion of the crack location and severity in terms of the frequency data
have been established for beams under axial or bending vibration. The
analysis leads to a constructive damage identification algorithm, called
λ-Curves Method.

Among possible extensions of the present results, we mention the
open problem of identifying a single crack in multi-span beams or in
one-story frames, and the determination of multiple cracks. However, it
should be noted that some of the mathematical tools we have adopted in
the analysis of a single beam with a single crack may have no straight-
forward generalization to those cases, and it is likely that new ideas are
needed to deal with these challenging inverse problems.
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to the parameters s and m and on specific properties of the eigenpairs
of the cracked beam. Under a technical a-priori assumption on the ze-
ros of a suitable function determined in terms of the eigenfunctions of
the problem, the above properties are used in the third and last step
to define the constructive algorithm of the λ-Curves Method for solving
the inverse problem. More precisely, it is shown that the analogue of
Property 1 of the axial case is true, that is, the crack can be uniquely
determined, up to a symmetric position, from the knowledge of the first
two natural frequencies of the beam.

For the sake of completeness, we conclude this section by making
some remarks on the technical differences we have found in the present
analysis and in the study of the analogous inverse problem of detecting
a single open crack in a longitudinally vibrating rod with variable profile
considered in Section 3. A first hindrance is connected with the study
of qualitative properties of the eigenfunctions of the cracked beam, such
as, the number of zeros and interlacing properties between the zeros of
eigenfunctions and their derivatives. This study can be carried out in
the axial context by extending classical Sturm-Liouville techniques for
the undamaged rod to a rod with a crack. Sturm-Liouville methods are
not easily extendable to fourth order operators and, therefore, we were
forced to follow a different approach, mainly based on the study of the
oscillatory character of the statical Green’s function of the cracked beam.
A second obstruction is connected with the study of the qualitative
behavior of the λ–s curves. It can be shown that the argument used
in the second order case does not apply to the fourth-order case. The
technique we have adopted here is different and it is essentially based
on a deformation argument which allowed us to reduce the analysis to
the study of the zeros of a suitable function defined on the undamaged
configuration. It is precisely at this point that, in order to apply the
deformation argument, we have introduced a Vanishing Condition, that
is an a priori assumption on the zeros of a suitable function determined
in terms of the eigenfunctions of the cracked beam. It can be shown
that this assumption is actually a property of the problem in the case of
small damage (Rubio et al. (2018)). In addition, by means of a different
approach, it was shown that the Vanishing Condition can be omitted
when the simply-supported beam is uniform, without introducing any
restriction on the damage severity (Rubio et al. (2016)). Whether

the Vanishing Condition may or may not be definitively removed from
the analysis of the inverse problem remains an open question, at the
moment.

7. Conclusions This paper has been devoted to review some recent
results on the inverse problem of identifying a single open crack in a vi-
brating beam by minimal natural frequency and antiresonant frequency
data. The beam is considered with variable profile and the crack severity
is not necessarily small. Sufficient conditions for the unique identifica-
tion of the crack location and severity in terms of the frequency data
have been established for beams under axial or bending vibration. The
analysis leads to a constructive damage identification algorithm, called
λ-Curves Method.

Among possible extensions of the present results, we mention the
open problem of identifying a single crack in multi-span beams or in
one-story frames, and the determination of multiple cracks. However, it
should be noted that some of the mathematical tools we have adopted in
the analysis of a single beam with a single crack may have no straight-
forward generalization to those cases, and it is likely that new ideas are
needed to deal with these challenging inverse problems.
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Fernández-Sáez J., Morassi A., Pressacco M., Rubio L. (2016). Unique deter-
mination of a single crack in a uniform simply supported beam in bending
vibration. Journal of Sound and Vibration, 371:94–109.

Freund L.B., Herrmann G. (1976). Dynamic fracture of a beam or plate in
plane bending. Journal of Applied Mechanics, 76-APM-15:112–116.

Gladwell G.M.L. (2004). Inverse Problems in Vibration, 2nd Edn. Dordrecht:
Kluwer Academic Publishers.

Greco A., Pau A. (2012). Damage identification in Euler frames. Computer &
Structures, 92-93:328–336.

Hearn G., Testa R.B. (1991). Modal analysis for damage detection in structures.
Journal of Structural Engineering ASCE, 117:3042–3063.

Humar J., Bagchi A., Xu H. (2006). Performance of vibration-based techniques
for the identification of structural damage. Structural Health Monitoring
5:215–241.

Khoo L.M., Mantena P.R., Jadhav P. (2004). Structural damage assessment
using vibration modal analysis. Structural Health Monitoring, 3:177–194.

Liang R.Y., Hu J., Choy F. (1992). Theoretical study of crack-induced eigen-
frequency changes on beam structures. Journal of Engineering Mechanics
ASCE, 118:384–396.

Morassi A. (2001). Identification of a crack in a rod based on changes in a pair
of natural frequencies. Journal of Sound and Vibration, 242:577–596.

Narkis Y. (1994). Identification of crack location in vibrating simply supported
beams. Journal of Sound and Vibration, 172:549–558.

Pau A., Greco A., Vestroni F. (2011). Numerical and experimental detection of
concentrated damage in a parabolic arch by measured frequency variations.
Journal of Vibration and Control, 17:605–614.

Rubio L. (2009). An efficient method for crack identification in simply sup-
ported Euler-Bernoulli beams. Journal of Vibration and Acoustics, 131: Pa-
per 051001.
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