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Abstract. A continuous membrane model for the infinitesimal deformation

of a spider web was recently proposed by Morassi, Soer and Zaera (2017) in the

context of axially-symmetric webs. In this note we derive an extension of the

model to spider webs with elliptic shape. The analysis of the tensile pre-stress

acting on the referential configuration and the free transverse vibration of a

supported elliptical web are studied in detail.

1. Introduction. This paper continues a line of research initiated in
Morassi et al. (2017) and aimed at developing a mechanical model for
spider webs. The spider web is a complex biological-mechanical system
that has attracted great interest in the scientific literature of the last
four decades, both from the biological and biomechanical point of view.
We refer to the introductory section in Morassi et al. (2017) and in
Mortimer et al. (2016) for an updated overview of the state-of-the-art
and for a discussion on the usefulness of modelling-based approaches to
the study of the dynamical response of spider webs. Here, we recall that
the first two-dimensional discrete model of spider web was proposed
by Aoyanagi & Okumura (2010, 2015). The model was formed by a
finite number of radial and circumferential threads, and each thread
was described as a stretched spring subject to pre-stress tensile force in
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the referential configuration. The model was used to determine the pre-
stress state in an intact axially-symmetric web, and in a web damaged by
removing some circumferential threads. The discrete model by Aoyanagi
and Okumura was purely static, and its possible use for the study of
either in-plane or out-of-plane response was not investigated, not even
under the hypothesis of small deformations of the web. In Morassi et al.
(2017) a continuum membrane model for the infinitesimal deformation
of a spider orb-web was proposed. The model was derived for a specific
class of spider orb-webs, namely, the axially-symmetric webs. The actual
discrete web, formed by a finite number of radial and circumferential
threads, was approximated by a continuous elastic membrane on the
assumption that the spacing between threads is small enough. The
continuous membrane has a specific fibrous structure which is inherited
from the original discrete web, and it is subject to tensile pre-stress in
the referential configuration. The out-of-plane static equilibrium and
the free transverse and in-plane vibration of a supported circular orb-
web were studied in detail, together with the description of the tensile
pre-stress acting in the referential configuration.

Although the model proposed by Morassi, Soer and Zaera can be
adapted to reproduce general geometries, in Morassi et al. (2017) the
attention was restricted to circular-shaped webs in which the circumfer-
ential threads belong to concentric circles. The main goal of this note
is to extend the analysis developed in Morassi et al. (2017) to spider
webs having elliptic shape, that is webs in which the fibrous structure
of the continuous membrane is formed by straight threads and elliptical
threads.

The analysis of the elliptic geometry turns out to be far from being
trivial and, in fact, it requires the introduction of additional a priori
hypotheses - with respect to the circular case - to allow a reasonable
analytical treatment of the problem. Among these assumptions, one
should recall the hypotheses chosen for the determination of the initial
pre-traction state in the spider web, both with the auxiliary and the
catching spiral. Another difference from the circular case is the impos-
sibility of separating the radial variable from the angular one in the
study of transverse vibration modes, which instead was feasible in case
of circular symmetry. Concerning this last point, it is shown that the
natural frequencies can be estimated from above and below in terms of
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the corresponding ones of the circular web, and that the approximation
is as good as the elliptic shape is close to a disc.

2. Kinematics. The elliptic spider web considered in this paper is a net
formed by two families of intersecting threads, see Figure 1. In a refer-
ential configuration Bk, one family coincides with the radial directions
passing through the origin O of a two-dimensional Cartesian coordinate
system {O,X1, X2} (radial threads), and the other family is formed by
homotopic ellipses (elliptic threads) having diameters along the axes X1,
X2 of length 2aR, 2bR, respectively, where a, b ∈ R and R > 0 is a given
length. The threads of each family are assumed to be close enough to

Figure 1: Referential configuration, parametric representation and co-
variant basis.

each other, so that the web can be described as a two-dimensional ellip-
tic continuous membrane. More precisely, the referential placement X
of the particle X in Bk is given by

X = X1(ϑ1, ϑ2)E1 +X2(ϑ1, ϑ2)E2 = ϑ1(a cosϑ2E1 + b sinϑ2E2), (2.1)
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ϑ1 = ρ, ϑ2 = ϕ, ϑ1 ∈ [0, R], ϑ2 ∈ [0, 2π], (2.2)

where {E1,E2,E3 = E1xE2} is the canonical basis of R3, that is Ei ·
Ej = δij , with δij = 0 if i ̸= j and δij = 1 if i = j, i, j = 1, 2, 3.
Here, ”×” and ”·” denote the vector and scalar product in R3, respec-
tively. With reference to Figure 1, the radial threads in Bk coincide with
the coordinate curves ϑ2 = constant, whereas the elliptical threads are
formed by the points with Cartesian coordinates (X1, X2) satisfying the
equation

X2
1

a2
+

X2
2

b2
= ρ2, ρ ∈ [0, R]. (2.3)

Our analysis is developed under the condition

b > a (2.4)

and, in particular, we shall consider the realistic range of values

b

a
∈ [1.1, 1.3], (2.5)

which is roughly satisfied in most of the real spider webs, see, for ex-
ample, Figure 2. Note that the axially-symmetric geometry of the
web, which was consider in Morassi et al. (2017), is obtained assum-
ing a = b = 1.
The unit tangent vector to the threads of the αth family is Aα

|Aα| , where

Aα = ∂X
∂ϑα

≡ X,α, α = 1, 2, are given by

A1 = a cosϑ2E1 + b sinϑ2E2, (2.6)

A2 = ϑ1(−a sinϑ2E1 + b cosϑ2E2), (2.7)

and |Aα| = (Aα ·Aα)
1
2 . Here, {A1,A2,A3 = E3} is the covariant basis

at a point X ∈ Bk, and {A1,A2,A3 = A3} is the contravariant basis at
the same point, with Aα ·Aβ = δαβ , where δαβ = 1 if α = β and δαβ = 0
if α ̸= β, α, β = 1, 2, namely,

A1 =
cosϑ2

a
E1 +

sinϑ2

b
E2, (2.8)

A2 =
1

ϑ1
(−sinϑ2

a
E1 +

cosϑ2

b
E2). (2.9)



33

A mechanical model for small vibrations of an elliptic spider web

Figure 2: Real spider-web geometry (left) and its elliptical approxima-
tion (right).

Our analysis is restricted to infinitesimal deformation assigned on the
referential configuration Bk. The actual placement of a particle X ∈ Bk

at a given time t (which is omitted here, to simplify the notation) is
denoted by x = X + u(X). The smooth displacement vectorial field
u : Bk → R3 is represented as

u =
2∑

α=1

uαAα + u3A3, (2.10)

where uα, α = 1, 2, are the contravariant components of u. Note that,
hereinafter, Greek indices assume values 1, 2, and summation of the in-
dex is explicitly indicated. The assumption of infinitesimal deformation
requires that

max

(
|u(X)|

diam(Bk)
+

∂u(X)

∂X

)
< ε, X ∈ Bk, (2.11)

where ε ∈ (0, 1) is a given number, and where all the quantities of
order O(ετ ), with τ > 1, are neglected. Finally, we denote by aα

|aα|



34

J .  K i n d t ,  A .  M o r a s s i 

Figure 3: Actual configuration, covariant and contravariant basis, and
internal force assumption.

the unit tangent vector to the threads of the αth family in the actual
configuration B of the membrane, see Figure 3, namely

aα =
∂x

∂ϑα
≡ x,α = Aα + u,α, α = 1, 2, (2.12)

where

a1 = (1 + u1,1)A1 +

(
u2,1 +

u2

ρ

)
A2 + u3,1E3, (2.13)

a2 = (u1,2 − ρu2)A1 +

(
1 + u2,2 +

u1

ρ

)
A2 + u3,2E3. (2.14)
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The contravariant basis {a1,a2,a3} in a point x of B is defined as aα ·
aβ = δαβ , a

3 = a3 =
a1xa2
|a1xa2| , and we have

a1 =
1

ρ2a2b2
[
(A12(u

1
,2 − ρu2) +A22(1− u1,1))

]
A1+

+
1

ρ2a2b2
[
(−A11(u

1
,2 − ρu2)−A12(1− u1,1))

]
A2+

+
1

ρ2a2b2
[
(A22u

3
,1 −A12u

3
,2)

]
E3,

(2.15)

a2 =
1

ρ2a2b2

[(
−A22

(
u2,1 +

u2

ρ

)
−A12

(
1− u2,2 −

u1

ρ

))]
A1+

+
1

ρ2a2b2

[(
A12

(
u2,1 +

u2

ρ

)
+A11

(
1− u2,2 −

u1

ρ

))]
A2+

+
1

ρ2a2b2
[
(A11u

3
,2 −A12u

3
,1)

]
E3.

(2.16)

3. Fiber densities. We assume that the radial threads in Bk are equally
spaced in the plane angle 2π, and we also assume that the elliptical
threads are equally spaced along the radial direction. Therefore, de-
noting by d̄1, d̄2 the thread densities in Bk of the radial and elliptical
threads, we have

d̄1 =
Cρ

ρ
√
a2 sin2 ϕ+ b2 cos2 ϕ

, (3.1)

d̄2 =
Cϕ

√
a2 cos2 ϕ+ b2 sin2 ϕ

, (3.2)

where the two positive constants Cρ, Cϕ are the number #ρ of radial

threads per unit plane angle and the number #ϕ of elliptical threads per
unit length along the radial direction in Bk, respectively. With reference
to Figure 4, the expression (3.1) of d̄1 guarantees that the number of
radial threads crossing the two elliptic arcs A1B1 (corresponding to ρ =
ρ1) and A2B2 (ρ = ρ2 > ρ1) coincide. We have

#ρ(A1B1) = d̄1(A1B1)ds1, #ρ(A2B2) = d̄1(A2B2)ds2, (3.3)
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Figure 4: Two generic elliptical threads intercept the same number of
radial threads.

where ds1, ds2 is the length of the arcs A1B1, A2B2, respectively. As-
suming the points Aα, Bα given by Aα = (ρα, ϕ), Bα = (ρα, ϕ + dϕ),
α = 1, 2, where ϕ is a given angle and dϕ is an infinitesimal increment,
by (2.1) we obtain dsα = ρα

√
a2 sin2 ϕ+ b2 cos2 ϕdϕ, α = 1, 2. Then,

using (3.1) in (3.3), we obtain #ρ(A1B1) = #ρ(A2B2). Similarly, the
expression (3.2) of d̄2 allows the conservation of the number of ellipti-
cal threads crossing the segments A1B1 (corresponding to ϕ = ϕ1) and
A2B2 (ϕ = ϕ2 > ϕ1), where Aα = (ρ, ϕα), Bα = (ρ + dρ, ϕα), α = 1, 2,
and dρ is an infinitesimal increment of the parameter ρ. With reference
to the Figure 5 we have

#ϕ(A1B1) = d̄2(A1B1)ds1, #ϕ(A2B2) = d̄2(A2B2)ds2, (3.4)

where ds1, ds2 is the length of the straight segments A1B1, A2B2, respec-
tively. By (2.1) we obtain dsα =

√
a2 cos2 ϕα + b2 sin2 ϕα dρ, α = 1, 2,

and, therefore, by (3.2), we obtain #ϕ(A1B1) = #ϕ(A2B2).
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Figure 5: Two generic radial threads intercept the same number of el-
liptical threads.

It should be noticed that the present analysis of the fiber densities
can be extended also to include more general situations in which, for
example, Cρ = Cρ(ϕ) and Cϕ = Cϕ(ρ). Hereinafter, for the sake of
simplicity, uniform fiber densities were assumed.

It is understood in our deformation analysis that no slippage can oc-
cur between fibers belonging either to the same family or to two different
families of threads, so that each given particle has exactly the same two
fibers passing through it at each stage of the deformation process. Under
this assumption, the expression of the fiber densities d1, d2 in the actual
configuration B can be obtained by postulating the conservation of the
number of threads crossing a material fiber lying on a coordinate curve
in Bk and the corresponding crossing its image after the deformation. It
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follows that

d1 = d̄1

√(
A22

a22

)
, d2 = d̄2

√(
A11

a11

)
, (3.5)

where Aαα = Aα ·Aα, aαα = aα · aα, α = 1, 2. After linearization, we
obtain

d1 = d̄1

(
1− u2,2 −

u1

ρ
− r1

(
u1,2
ρ

− u2

))
, (3.6)

d2 = d̄2
(
1− u1,1 − r2(ρu

2
,1 + u2)

)
, (3.7)

with the numbers r1, r2 defined as

r1 =
(b2 − a2) sin 2ϕ

2(a2 sin2 ϕ+ b2 cos2 ϕ)
, (3.8)

r2 =
(b2 − a2) sin 2ϕ

2(a2 cos2 ϕ+ b2 sin2 ϕ)
. (3.9)

4. Internal contact forces and equilibrium equations. The analysis
follows the arguments shown in Morassi et al. (2017). For reader’s con-
venience, the essential aspects are recalled in the sequel.

We assume that the internal force on an arc element of section along
the αth family of threads in the actual configuration B is a tensile force
parallel to the αth coordinate curve, i.e., parallel to aα

|aα| , and we denote

by n
(
x, aα

|aα|

)
the force per unit length acting on an arc of the actual

surface B having unit normal aα

|aα| , α = 1, 2. The external force field
acting on the deformed membrane is assumed as

p =
2∑

α=1

pαaα + p3a3, (4.1)

where pα, p3 are regular functions of x, α = 1, 2, possibly coincident with
the inertial forces per unit area in the dynamic case. By the Cauchy’s
lemma, for every unit vector ν belonging to the tangent plane to the
surface B at x, there exists a unique stress tensor field N = N(x) such
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that n(x,ν) = N(x)ν, where

N =

2∑
α=1

Nα ⊗ aα, Nα = n

(
x,

aα

|aα|

)
|aα| ≡

2∑
β=1

Nαβaβ , α = 1, 2.

(4.2)

In particular, on the arc element of the surface with normal a2

|a2| a force

parallel to a2 is acting and, analogously, on the arc element of surface
having normal a1

|a1| a force parallel to a1 is acting. Then

n

(
x,

aα

|aα|

)
= dαTα, α = 1, 2, (4.3)

where Tα is the traction on a single thread belonging to the αth co-
ordinate curve (e.g., a force vector parallel to aα), and dα is the fiber
densities of the αth family threads.

The threads have vanishing shear/bending stiffness and we assume
that the magnitude of the force Tα depends only on the elongation in
the direction of the αth coordinate curve, that is

Tα = (Tα +Aασα)
aα
|aα|

, α = 1, 2. (4.4)

In the above expression, Tα > 0 is the tensile pre-stress force acting in
the referential configuration Bk; Aα is the area of the cross-section of a
single thread belonging to the αth family; and σα is the normal stress
caused by the deformation of the thread. By (4.2)–(4.4), we have

Nα = dα(Tα +Aασα)
|aα|
|aα|

aα, α = 1, 2, (4.5)

or, in controvariant components,

N11 = d1(T 1 +A1σ1)

√
|a11|
|a11|

, (4.6)

N22 = d2(T 2 +A2σ2)

√
|a22|
|a22|

, (4.7)

N12 = N21 = 0. (4.8)
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where aαα = aα · aα, α = 1, 2.
Under the assumption of elastic material, we have

σα = Eαεα, α = 1, 2, (4.9)

where Eα > 0 is the Young’s modulus of the material and εα is the
elongation measure of the threads belonging to the αth family. By the
assumption (2.10) on the displacement field and working within small

deformations, the linearized version of εα is εα = uα|α
Aαα

, α = 1, 2, where
the covariant derivative uα|α of the covariant component uα with respect
to ϑα is given by

uα|α = uα,α−
2∑

δ=1

Γ
δ
ααuδ, α = 1, 2, (4.10)

and Γ
δ
αβ = Aα,β ·Aδ is the Christoffel symbol defined on the referential

configuration Bk. In particular, we have

u1|1 = u1,1, u2|2 = u2,2 + ρu1 (4.11)

and

ε1 =
u1,1

(a2 cos2 ϕ+ b2 sin2 ϕ)
, ε2 =

u2,2 + ρu1

ρ2(a2 sin2 ϕ+ b2 cos2 ϕ)
. (4.12)

The differential equations of equilibrium can be derived by using the
Euler-Cauchy balance force equation on B, using Cauchy’s lemma and
applying the Divergence Theorem. Under the assumption of smooth
tensor and vector fields, we have

{ ∑2
α=1N

γα|α + pγ = 0, in B, γ = 1, 2,∑2
α,β=1N

βαbβα + p3 = 0, in B,

(4.13)

(4.14)

where

Nγα|α = Nγα,α+
2∑

δ=1

NγδΓα
δα +

2∑
δ=1

N δαΓγ
δα, (4.15)

Γγ
αβ = aα,β · aγ , (4.16)

bβα =

2∑
γ=1

bγαaγβ , aγβ = aγ · aβ , bγα = −a3,α · aγ . (4.17)
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Finally, by inserting the expressions of the actual thread densities (3.6),
(3.7) in (4.6), (4.7), and using the expressions (4.12) of ε1, ε2, after ne-
glecting high order terms, we obtain the linearized constitutive equations
of the membrane stresses

N11 =
d̄1(T 1 +A1σ1)

ab

(
1− u2,2 −

u1

ρ
− 2u1,1 − r2

(
ρu2,1 + u2

))√
r2
r1
,

(4.18)

N22 =
d̄2(T 2 +A2σ2)

ρ2ab

(
1− u1,1 − 2

(
u2,2 +

u1

ρ

)
− r1

(
u1,2
ρ

− u2

))√
r1
r2
.

(4.19)

5. Pre-stress state. The expression of the pre-stress state acting on
the referential configuration Bk of the membrane can be determined
by evaluating the expressions (4.18), (4.19) of N11, N22 for vanishing
displacement field. We have

N
11

=
d̄1T 1

ab

√
r2
r1
, (5.1)

N
22

=
d̄2T 2

ρ2ab

√
r1
r2
,

(
N

12
= N

21
= 0

)
. (5.2)

Recalling the expressions (3.1), (3.2) of the fiber densities and the defi-
nitions (3.8), (3.9) of the quantities r1 and r2, we have

N
11

=
CρT 1

ρab
√
a2 cos2 ϕ+ b2 sin2 ϕ

, (5.3)

N
22

=
CϕT ϕ

ρ2ab
√
a2 sin2 ϕ+ b2 cos2 ϕ

, (5.4)

with Cρ, Cϕ constants.

The pre-stress fieldN
αβ

must satisfy the equilibrium equations under
vanishing load, that is




∑2
α=1N

γα|α = 0, γ = 1, 2, in Bk,∑2
α,β=1N

βα
bβα = 0, in Bk,

(5.5)

(5.6)
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where bβα, α, β = 1, 2 are the entries of the second fundamental form of
the web surface evaluated in the referential (flat) configuration Bk. Since
all the bβα’s vanish in Bk, the force equilibrium equation (5.6) in trans-
verse direction is identically satisfied, whereas the in-plane equilibrium
equations in (5.5) become




N
ρρ
,ρ+

N
ρρ

ρ − ρN
ϕϕ

= 0,

N
ϕϕ
,ϕ= 0.

(5.7)

(5.8)

Note that, hereinafter, we have defined N
ρρ

= N
11
, N

ϕϕ
= N

22
. More-

over, we shall use the notation T ρ = T 1, T ϕ = T 2, (·),ρ= ∂(·)
∂ρ , (·),ϕ=

∂(·)
∂ρ .

Equation (5.8) implies

N
ϕϕ

= N
ϕϕ
(ρ), (5.9)

that is, recalling (5.4),

T ϕ(ρ, ϕ)√
a2 sin2 ϕ+ b2 cos2 ϕ

:= τϕ(ρ), (5.10)

where τρ(ρ) is a function to be determined. By (5.10), equation (5.7)
can be written as

(ρN
ρρ
),ρ=

Cϕ

ab
τϕ(ρ), (5.11)

and, therefore,
(ρN

ρρ
),ρϕ= 0, (5.12)

which implies

Cρ

ab

T ρ(ρ, ϕ)√
a2 cos2 ϕ+ b2 sin2 ϕ

= p(ρ) + q(ϕ), (5.13)

where p = p(ρ), q = q(ϕ) are two unknown functions. The above equa-
tion shows that the problem of determining the state of pre-stress in
the present treatment is underdetermined. In order to investigate on
the existence of an equilibrated tensile pre-stress state, we shall assume
q(ϕ) ≡ 0, that is we accept that

T ρ(ρ, ϕ)√
a2 cos2 ϕ+ b2 sin2 ϕ

:= τρ(ρ). (5.14)
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Inserting (5.10), (5.14) in (5.7), we obtain a single differential equation
involving two unknown functions, namely

τ ′ρ(ρ) = ξτϕ(ρ), in (0, R), (5.15)

where ξ = Cϕ

Cρ > 0 and τ ′ρ(ρ) =
d τρ(ρ)

dρ .
Following the arguments discussed in Morassi et al. (2017), we shall

further introduce an assumption on the circumferential pre-stress τϕ(ρ).
We can distinguish two main situations, which correspond to the real
process followed by the spiders in creating their webs. Referring to
Morassi et al. (2017) and to Wirth & Barth (1992) for more details, we
recall that in the early stage of the web the spider creates a preliminary
family of circumferential threads, called auxiliary spiral. The exper-
iments performed by Wirth & Barth (1992) support the hypothesis of
proportionality between circumferential and radial pre-stress. According
with those observations, we assume

τϕ(ρ) = kτρ(ρ), k > 0 constant. (5.16)

Replacing (5.16) in (5.15), and accepting the boundary condition

τρ(ρ = R) = σ, σ > 0 constant, (5.17)

on the boundary of the elliptic membrane, we obtain

τρ(ρ) = �Tekξρ, ρ ∈ [0, R], (5.18)

where �T = σe−kξR > 0. Recalling (5.10), (5.14), the tensile pre-stress
acting on a single radial (T ρ) or elliptical (T ϕ) thread is

T ρ = �Tekξρ
√

a2 cos2 ϕ+ b2 sin2 ϕ, (5.19)

T ϕ = k �Tekξρ
√

a2 sin2 ϕ+ b2 cos2 ϕ. (5.20)

In the second stage of the web construction, the spider removes the
auxiliary spiral and adds the threads of the catching - or sticky - spiral.
This last configuration is the finished web, and arguments discussed in
Wirth & Barth (1992) suggest that the tensile pre-stress in the elliptical
threads can be assumed approximately constant, namely

τϕ(ρ) = T = constant > 0. (5.21)
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Figure 6: Maximum and minimum pre-stress state values in a spider-web
with sticky spiral.

By (5.15) and (5.17), we obtain

τρ(ρ) = �T + ξµρ, (5.22)

with �T such that �T − ξµR > 0 and, therefore, by (5.10) and (5.14), we
have

T ρ = ( �T + ξT ρ)

√
a2 cos2 ϕ+ b2 sin2 ϕ, (5.23)

T ϕ = T
√
a2 sin2 ϕ+ b2 cos2 ϕ. (5.24)

We conclude this section with a couple of remarks on the obtained state
of stress in the finished web. Recalling our geometrical assumptions (2.4)
and (2.5), from (5.23), (5.24) it turns out that the maximum tensile
force in a radial and in an elliptical thread is attained at the points
(X1 = 0, X2 = bR) (T

max
ρ = σb) and (X1 = aR,X2 = 0) (T

max
ϕ = T b),

respectively; see Figure 6. It follows that the maximum tensile force T ρ is
attained in the radial thread having maximum length, and this property
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is in agreement with the need to ensure ”uniform” stiffness of the web
to transverse loads. Moreover, the maximum value of the traction in
the threads belonging to the two families is reached in different points,
suggesting an ”optimal” distribution of the pre-stress inside the web.

In conclusion, although the a priori assumptions made in deriving
the state of pre-stress are rather strong, the final result seems to be
reasonable and it will be used in studying the transverse and in-plane
dynamic response of the web in the next sections.

6. Transverse motion. By replacing the expressions (4.18) and (4.19)
of N11 and N22 in equation (4.14), after linearization, we obtain the par-
tial differential equation governing the transverse motion of the mem-
brane under the transverse load per unit area p3 (inertia forces are in-
cluded):

CρT ρ

ρab
√
a2 cos2 ϕ+ b2 sin2 ϕ

w,ρρ +
CϕT ϕ

ρ2ab
√
a2 sin2 ϕ+ b2 cos2 ϕ

w,ϕϕ+

+
CϕT ϕ

ρ2ab
√
a2 sin2 ϕ+ b2 cos2 ϕ

ρw,ρ + p3 = 0,

(6.1)

or, equivalently, recalling (5.10) and (5.14),

Cρ

ρab
τρw,ρρ +

Cϕ

ρ2ab
τϕ(w,ϕϕ + ρw,ρ) + p3 = 0, (6.2)

where τϕ, τρ, are given by (5.16)-(5.18), (5.21)-(5.22) for the web with
auxiliary or catching spiral, respectively.

In the sequel we shall investigate on a special case of (6.2), namely
the undamped transverse free vibrations of the elliptical membrane sup-
ported at the boundary, i.e.,

u3(R, ϕ, t) = 0, (ϕ, t) ∈ [0, 2π]× [0,∞). (6.3)

In this case, the function p3 in (6.2) coincides with the surface density
of the out-of-plane inertia forces. Denoting by mρ and mϕ the uniform
linear mass density of the radial and elliptical threads, respectively, the
surface mass density γ of the continuum model can be determined as
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γ = dm
dA , where dA = |A1×A2| dρ dϕ = ρab dρ dϕ is the elementary area

in Bk and dm is the elementary mass of the threads lying in dA. It turns
out that

γ(ρ, ϕ) =
Cρ

ρab
mρ

√
a2 cos2 ϕ+ b2 sin2 ϕ+

Cϕ

ab
mϕ

√
a2 sin2 ϕ+ b2 cos2 ϕ

(6.4)
and, therefore, the transverse motion equation becomes

Cρ

ρab
τρu

3
,ρρ +

Cϕ

ρ2ab
τϕ(u

3
,ϕϕ + ρu3,ρ)− γ(ρ, ϕ)u3,tt = 0, (6.5)

for (ϕ, ρ, t) ∈ (0, 2π)× (0, R)× (0,∞). Setting

u3 = w(ρ, ϕ)y(t), (6.6)

we can separate the variables (ρ, ϕ) from the time variable t, obtaining

y′′ + λy = 0, t > 0, (6.7)

and, using (5.15),

(τρw,ρ),ρ + λab�γw = −g

ρ
w,ϕϕ, (6.8)

where �γ = ρ
Cρ γ, λ ∈ R+ is the eigenvalue to be determined and

{
kξτρ (unfinished web),

ξµ (finished web).

(6.9)

(6.10)

The expression (6.4) of the mass density γ prevents the separation be-
tween the radial variable ρ and the angular variable ϕ. Therefore, in
the sequel we only provide estimates, from below and from above, of the
eigenvalues of (6.8) under the boundary condition (6.3). It is easy to
show that

�γ−(ρ) ≡ a(mρ + ξmϕρ) ≤ ab �γ ≤ b(mρ + ξmϕρ) ≡ �γ+(ρ), (6.11)

and it should be noticed that the variables ρ and ϕ can be separated in
(6.8) when ab �γ is replaced either by �γ− or by �γ+. Let us consider, for
example, the coefficient �γ+. We can look for a solution to (6.8) (with
ab �γ replaced by �γ+) of the form

w(ρ, ϕ) = u(ρ)Φ(ϕ), (6.12)

where, by regularity of w, Φ(ϕ) is a non trivial solution of the eigenvalue
problem
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Φ′′ + ν2Φ = 0,

Φ(0) = Φ(2π),

Φ′(0) = Φ′(2π),

(6.13)

(6.14)

(6.15)

and u(ρ) solves

(τρu
′)′ + λ+γ̃+u =

ν2

ρ
gu, ρ ∈ (0, R), (6.16)

where the function g = g(ρ) is defined by (6.9)-(6.10). It is easy to show
that the eigenpairs to (6.13)-(6.15) are

ν2n = n2, Φn(ϕ) = A cos(nϕ) +B sin(nϕ), n = 0, 1, 2, ... (6.17)

If n = 0, then ν0 = 0 and Φ0(ϕ) is a non vanishing constant. The
corresponding eigenfunctions w are functions of the variable ρ only, and
can be determined by solving the problem




(τρu
′
0)

′ + λ+
0 γ̃

+u0 = 0, ρ ∈ (0, R),

u0(R) = 0,

u′0(0) = 0,

(6.18)

(6.19)

(6.20)

where in deriving the boundary condition (6.20) the absence of a concen-
trated transverse force acting in O has been taken into account. Problem
(6.18)–(6.20) admits simple real eigenvalues {λ+

0,j}∞j=1 such that

0 < λ+
0,1 < λ+

0,2 < ..., lim
j→∞

λ+
0,j = +∞. (6.21)

When n ≥ 1, the eigenfunctions u(ρ) in (6.12) can be determined by
solving




(τρu
′)′ + λ+

n γ̃
+u = n2

ρ gu, ρ ∈ (0, R),

u(R) = 0,

u(0) = 0.

(6.22)

(6.23)

(6.24)

For every n, n ≥ 1, the eigenvalues of the above problem will be indicated
as {λ+

n,m}∞m=1, with

0 < λ+
n,1 < λ+

n,2 < ..., lim
m→∞

λ+
n,m = +∞. (6.25)
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Note that the end condition u(0) = 0 guarantees for finite values of the
strain energy associated with the transversal deformation u = u(ρ).

In conclusion, the elliptic membrane with mass density �γ+ as in
(6.11) has the sequence of eigenvalues {λ+

n,m}∞m=1, n = 0, 1, 2, .... By re-
peating the above analysis with �γ−, we obtain the eigenvalues {λ−

n,m}∞m=1,
n = 0, 1, 2, .... Finally, by a monotonicity theorem, see Courant &
Hilbert (1965), we can estimate from above and from below the eigenval-
ues of (6.8). More precisely, after a suitable reordering, every eigenvalue
{λn,m} of (6.8) is such that

λn,m(�γ+) ≤ λn,m(�γ) ≤ λn,m(�γ−). (6.26)

The accuracy of the above bounds clearly depends on the ratio b
a , see

(6.11). However, for b
a ∈ [1.1, 1.3] it is expected that λn,m(�γ+), λn,m(�γ−)

offer a good approximation of the actual eigenvalue λn,m(�γ).

7. In-plane deformation. In this section we write the equations gov-
erning the in-plane mechanical behavior of the elliptic membrane. A
complete study of the in-plane problem is outside the goals of the present
note, and it will be the object of future investigation. Using the con-
stitutive equations (4.18), (4.19) for Nρρ, Nϕϕ, respectively, within the
equilibrium equations (4.13), recalling (5.10), (5.14) and passing to con-
travariant components, after linearization we obtain

Cϕτϕ
ρ2ab

[uρ,ϕϕ − ρuϕ,ϕ − r2(ρ
2uϕ,ρ + ρuϕ) + r1(u

ρ
,ϕ − ρuϕ)]

− Cρτρ
ρab

r2(ρu
ϕ
,ρρ + 2uϕ,ρ) +

CρAρEρ[u
ρ
,ρρ + r2(ρu

ϕ
,ρρ + 2uϕ,ρ)]

ρab
√
a2 cos2 ϕ+ b2 sin2 ϕ

+

−
CϕAϕEϕ[u

ρ + ρuϕ,ϕ + r1(u
ρ
,ϕ − ρuϕ)]

ρ2ab
√
a2 sin2 ϕ+ b2 cos2 ϕ

+ γ(ρ, ϕ)uρ,tt = 0,

(7.1)
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Cϕτϕ
ρ2ab

[
ρuϕ,ρ + uϕ +

a2b2

ρ

(uρ,ϕ − ρuϕ)

(a2 sin2 ϕ+ b2 cos2 ϕ)2

]
+

−
Cϕτϕ
ρ2ab

[
r21

(
uρ,ϕ
ρ

− uϕ

)
− r1

ρ
(uρ,ϕϕ − ρuϕ,ϕ)

]
+

+
CϕAϕEϕ

ρ2ab
√
a2 sin2 ϕ+ b2 cos2 ϕ

[
2

ρ
uρ,ϕ − uϕ + uϕ,ϕϕ +

r1
r2

(
uϕ −

uρ,ϕ
ρ

)]
+

+
CϕAϕEϕ

ρ2ab
√
a2 sin2 ϕ+ b2 cos2 ϕ

[
r1
ρ
(uρ + uρ,ϕϕ + 3r1(u

ρ
,ϕ − ρuϕ))

]
+

+
Cρτρ
ρab

(
uϕ,ρρ +

2

ρ
uϕ,ρ

)
+ γ(ρ, ϕ)uϕ,tt = 0,

(7.2)
where Aρ, Aϕ is the area of the cross-section of a single radial and
elliptical thread, respectively, and Eρ, Eϕ are the Young’s modulus of
the material forming the two families of fibers. Equations (7.1) and
(7.2) express the dynamic equilibrium for undamped free infinitesimal
vibrations in radial and angular direction, respectively.

8. Conclusions. The formulation of mechanical models of the dynamic
response of spider webs has raised an increasing interest in recent years,
due to its implications in the study of the spider behavior. Morassi, Soler
and Zaera (2017) proposed a continuous model of pre-tensed structured
membrane of orb-webs. The model was developed under the assump-
tions of axial symmetry and small deformations. The main purpose of
this note was to generalize the above approach to spider webs of ellip-
tical shape. The extension required the introduction of appropriate a
priori hypotheses for determining an admissible pre-tension state in the
referential configuration. The present work should be considered as a
preliminary step towards the study of more realistic spider web geome-
tries having a single symmetry axis.
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