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Exact determination of beams with given
buckling loads

ANTONINO MORASSI*

Abstract. We present an analytical procedure for the determination of Euler-
Bernoulli beams which have given values of the first N buckling loads. The
result is valid for pinned-pinned end conditions and for beams with regular
bending stiffness. The analysis is based on a reduction of the buckling problem
to an eigenvalue problem for a vibrating string, and uses recent results on
the exact construction of Sturm-Liouville operators with prescribed natural
frequencies.

Key-words. Buckling loads, beams, Darboux Lemma, quasi-isospectral op-
erators, inverse problems.

1. Introduction. In the recent paper (Calio et al., 2011) the authors
have shown how to construct families of Euler-Bernoulli beams which
have exactly the same infinite sequence of buckling loads of a given
beam under a specified set of end conditions. These beams are called
isobuckling beams.

The research developed in (Calio et al., 2011) left an important ques-
tion unsolved, namely: can we construct an Euler-Bernoulli beam which
has exactly given values of the first N buckling loads?

In this note we give a positive answer to the above question and,
under suitable assumptions, we present a constructive explicit procedure
for solving the inverse problem.

Our result holds for beams simply supported at the ends subject to
constant compressive axial load and with regular bending stiffness coef-
ficient. The analysis is based on a reduction of the buckling problem to
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an equivalent eigenvalue problem for a class of fixed-fixed strings, and
adapts recent results on the exact construction of second-order Sturm-
Liouville operators in canonical form with prescribed natural frequen-
cies, see (Morassi, 2015). In particular, the key mathematical tool relies
on a classical lemma by Darboux (Darboux, 1882), which allows to ex-
plicitly construct families of Sturm-Liouville operators that share all the
eigenvalues of a given Sturm-Liouville operator, with the exception of a
single eigenvalue which is free to move in a prescribed interval. These
operators are called quasi-isospectral operators. Finally, the analysis
shown in (Morassi, 2015) is used to determine strings corresponding to
the quasi-isospectral Sturm-Liouville operators and, ultimately, to find
beams quasi-isobuckling to a given beam.

2. Elastic buckling of a beam and an equivalent string problem. Con-
sider a thin straight elastic beam under constant compressive axial load
P, P > 0. The buckling problem is governed by the Euler-Bernoulli-
Kirchhoff equation (see (Love, 1944))

d? d*v(z) d*v(z)

— | EI P =0 0,L 2.1

i (1@ ) PP —0 a0, @)
where v = v(z) is the transverse displacement of the beam axis at

the cross-section of abscissa x evaluated with the principal plane of
bending. In equation (2.1), E is the Young’s modulus of the material,
E = const. > 0, and I = I(x) is the second moment of the cross-sectional
area about a principal axis through the centroid of the cross-section. We
shall be concerned with beams for which I(x) is a strictly positive, twice
continuously differentiable function of x in [0, L], e.g.

I(x) > 1y >0, z€0,L], IecC?*]o,L]). (2.2)

Let us assume that the beam has Pinned-Pinned (P-P) ends. The buck-
ling problem consists in solving the eigenvalue problem

20(x 20(x
% (I(x)ddx(2 )) + )\Qdd:v(2) = 0’ T e (O7L)a (23)
2y
U(O) = ddx(QO) =0,
20 )
(L) = TUP — o, (2.5)
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where
A=, 2.
E (2.6)

Under the above assumptions, there exists an infinite sequence of buck-
ling loads {P,, = A2, E}>°_,, with

m=1»

O<P<P<.., lim P, = oo, (27)
m—0o0
such that (2.3)—(2.5) have a non-trivial solution v, = v, (x), m > 1.
This sequence is the buckling spectrum of the Pinned-Pinned beam and
we write

(X2 boe_y =BSp(I(x); P — P). (2.8)

The following proposition states the equivalence between the eigenvalue
problem (2.3)—(2.5) and the free vibration problem for a family of taut
strings.

Proposition 2.1:
If {2, v(x)} is an eigenpair of (2.3)—~(2.5) with I = I(z) satisfying (2.2),
then {\2,v(x)} is an eigenpair of

o) L X2p(a)u(z) =0, =€ (0,L), (2.9)
v(0) =0 =wv(L), (2.10)

with )
plx) = @) x €0, L]. (2.11)

Viceversa, if {\?,v(x)} is an eigenpair of (2.9)—(2.10), then {\2,v(x)}
is an eigenpair of (2.3)—(2.5).

The eigenvalue problem (2.9)—(2.10) describes the free, infinitesimal,
transverse vibration of amplitude v = v(x) of a string with frequency A
and mass density p = p(x), p € C%([0, L]) and p(x) > po > 0 in [0, L].
The string is pulled with unit tension, has length L and is fixed at both
ends. A proof of Proposition (2.1) is presented in (Calio et al., 2011)
(Proposition 1).
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3. Construction of beams with given buckling loads. Let n,n > 1, be
given. The key step of our method is based on the explicit construction
of a new P-P beam quasi-isobuckling to the given beam, that is a beam
I = I(z) having the same buckling loads as the given beam I = I(z),
with the exception of the nth buckling load. In fact, by keeping fixed all
the eigenvalues )\%Lwith m # n and moving the nth eigenvalue A2 to the
desired value, say A2, and using repeatedly the procedure, after N steps
we will construct a beam with the first N given eigenvalues {\2 }N_,
and the construction is completed.

The main steps of the construction of P-P beams I = I(z) quasi-

~

isobuckling to a given P-P beam I=1 (x) are the following.

STEP 1. The string eigenvalue problem (2.9)-(2.10) is reduced to
Sturm-Liouville canonical form with Schrédinger potential g (see Section
3.1).

STEP 2. The Darboux Lemma (see Appendix) is used to construct
explicit families of Schrédinger potentials ¢ quasi-isospectral to the ini-
tial potential g (see Section 3.2).

STEP 3. The Darboux Lemma is applied once more in iterate form
to determine string mass densities corresponding to the quasi-isospectral
potentials ¢ (see Section 3.3).

STEP 4. Finally, the equivalence stated in Proposition 2.1 is used
to find P-P beams I = I(z) quasi-isobuckling to the initial P-P beam
T = I(x) (see Section 3.4).

We shall analyze Steps 1-4 in the following subsections.

3.1 Reduction to canonical form. Suppose that a P-P beam 7= f(x),
satisfying conditions (2.2), is given. The buckling spectrum of this beam
is {X?n}f,f:l = BSp(I(z); P — P). Denote by {p(z)} the corresponding
Fixed-Fixed (F-F) string as defined in Proposition 2.1, with spectrum
{X2}%°_, = sp(p(x); F — F). The Liouville transformation

T —1 mAs 1/24s. p= LAs 1/24
5<>—ﬁ/o<p<>> ds. D /O<p<>> ds, (3.1)
2
y(€) = A(E)o(a), a4<5>=’;;2ﬁ<x>, (3.2)

reduces the eigenvalue problem (2.9)-(2.10) (with p replaced by p) for
{22, v(z)} to the Sturm-Liouville canonical form
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TUE 4 Ty (€) = GE)y(©), €€ (0,1), (3.3)
y(0) =0=y(1), (3.4)

where the eigenvalue ji and the potential §(¢), ¢ € C°([0, 1]), are defined

as
B RN 1 d*a(¢)
= 2A2 = — s

£e(0,1). (3.5)

3.2 Quasi-isospectral potentials. Following the analysis developed in
(Poschel & Trubowitz, 1987), it is possible to explicitly construct families
of Sturm-Liouville operators L = —% +q(&), with potential ¢(&) quasi-
isospectral to the potential ¢(§) under Dirichlet end conditions. The
analysis is based on the Darboux Lemma described in the Appendix.
Here, we simply recall the main result. Let us introduce some notation.
Let n, n > 1, be a given number and let ¢t € R be such that

pn—1(q) < pn(q) +1 < pin41(2), (3.6)

with po(q) = 0. Denote by d;; the Kronecker symbol. For € C, let
vi = vi(§,q, 1), i = 1,2, be the solution to the initial value problem

i oy =aqyi, 2 €(0,1), (3.7)
y’b( ) - 5%17 (38)
y;(0) = dia, (3.9)
and denote by w, = w, (&, q, 1) the solution to
wn(0) = 1, (3.11)

for p # py (note that the function w, has a removable singularity at
W= fip). Let

~ ~ dzy 7/\ dwp, 7/\,

zn(€,9) (3.13)

where zy, is the nth eigenfunction of (3. 4) and (+) = @ For every

3)-(3.
g € C°([0,1]), the function wy, = wyp (£, 1), n > 1, is a contlnuous and
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strictly positive function on [0, 1] X (tn—1(q), pn+1(q)). Moreover, wy, is
a C2-function of the variable ¢ in [0, 1]; see (Poschel & Trubowitz, 1987).
We define wy, 1 = w(&, q, pn, +t) and wp ¢ = w(&, q, pin + t).

Under the above notation, for every given n, n > 1, and t satisfying
(3.6), it is possible to prove that the potential

2

2(6) = at6) - 2;22(111 () (3.14)

has all the same eigenvalues of the potential g(§), with the exception
of the nth eigenvalue, which takes the value p,(q) = un(q) + t. More-
over, the eigenfunctions {k,,+}5o_; associated to ¢(§) have the following
explicit expressions

£
kit = Zm — twn’t/ z2m(8)zn(s)ds, form >1, m #n, (3.15)
0

)

kg = (3.16)

’ Wnt

3.3 Quasi-isospectral strings. The eigenvalues {fi, } of (3.3)—(3.4) have
the asymptotic form

~

fim = (mm)* 4+ O0(1), asm — oo, (3.17)

with 5(1) bounded quantity as m — co. Therefore, if the two strings
{p(z)} and {p(x)} are quasi-isospectral, i.e. A2, = A2, for every m # n,
where n > 1 is a given number, then, for m large,

PPA2, = (mm)?+0(1), p*A% = (mm)>+0(1),  (3.18)

so that
P> =7’ (3.19)

Now, to find a supported string {p(x)} quasi-isospectral to a given sup-
ported string {p(x)}, we must preliminarily find a function a = a()
corresponding to the new quasi-isospectral potential ¢ = ¢(&) given by
(3.14), that is
d*a(§)
dg?

= q(&)a($), (3.20)
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with a = a(&) of one-sign in [0, 1]. A double application of the Darboux
Lemma yields the following explicit expression for a:

wy,¢(§)

[2n,a] (), n>1, (3.21)
see (Morassi, 2015) for details. In particular, it is possible to prove that
a = a(¢) given by (3.21) is a C?-function of one sign in [0, 1] for every ¢
satisfying (3.6).

To complete the construction of quasi-isospectral strings, we reverse
the Liouville transformation (3.1)7(3.2), namely

L ds
/0 A (3.22)

"2 2
v(z)za(gi, o) = 2k, (3.23)

and the Sturm-Liouville eigenvalue problem (3.3)—(3.4) (with g(&) re-
placed by ¢(£)) is transformed back into the string eigenvalue problem

Sl L N2 p(x)o(a) =0, x € (0,L), (3.24)
v(0) = 0 = v(L). (3.25)

Therefore, the two strings {p(x)}, {p(x)} of equal length L, having fixed-
fixed end conditions and pulled by unit tension, are quasi-isospectral.
More precisely, given a number n, n > 1, we have A2, (p(z)) = \2,(p(z))
for every m > 1, m # n, and the nth eigenvalue A2 (p(z)) is connected
with A2(p(x)) via (3.6).

3.4 Constructing beams with a given finite set of buckling loads. In
this section we shall complete the proof of the main result of the paper.
The analysis follows the lines of the corresponding analysis developed in
(Morassi, 2015) (Section 5) for the determination of families of beams
with a given set of natural frequencies.

Let us consider a P-P beam with Iy = Iy(x) and buckling loads
{2 (Io)}5o_, (e.g., eigenvalues of (2.3)—(2.5) with I(z) replaced by Iy(x)).
Starting from this P-P beam, we wish to construct a new beam P-P hav-
ing prescribed values of the first N, N > 1, buckling loads {2, }V
with

m=1

0< A<M <..<\. (3.26)
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Following the analysis of the previous sections, starting from the beam
Iy(z) we can construct a new beam I1(z) so that A2 (1) = AZ,(Io) for
m > 2, and )\%(I 1) coincides with the desired value )\%. More precisely,
denoting by ag(&) the function a(¢) appearing in (3.2) (and correspond-
ing to the initial beam Iy(x)), the function a1 = a1(§) associated to the
new beam I;(z) is given by (3.21):

_ o w(§)
a1(§) = ao(§) tm(fo)wu(é) [21(Lo), ao](€) (3.27)
where the functions wy (), wi(§) are defined in (3.10)-(3.12), (3.13),
1 d%ao(§)

respectively, with g(§) replaced by qo(§) = GRRE Moreover, i,
and A, are linked as in (3.5), and ¢ satisfies (3.6). If 11 < pa(Ip), then
we can determine ¢, say ¢t = t1, such that ui(/1) = fi1. The new beam
I(z) has buckling loads (or eigenvalues) {A\%,A3(Iy), A\3(Io), ...}, with
0< X% < A3(Ip) < A3(Ip) < ..., and can be used as starting point for the
next step of the construction.

By repeating the above arguments, and provided that s < ps(1p),
we can modify 17 so as to keep A2, (I;) fixed for m # 2 and move A\3(I;)
to the desired value X%, by taking

W2ty (5)

(&) = al®) —t s 6

[z2(11), a1](§), (3.28)

where
ty = iz — p2(lo). (3.29)

The buckling loads of the P-P beam I3(z) (associated to az(€)) are
{A3,73,03(1p), A\{(Ip), ...}. By using repeatedly this procedure, after N
steps we construct a beam with coefficient Iy (x) such that

A (In) =X, forl1<m<N, (3.30)

and the construction is completed. Clearly, the choice of the initial beam
Ip(z) is restricted by the conditions

A< X(Io), A3 <M(o), .y Ayoq < AN(T0), A < Mrpa(fo),
(3.31)
which allow to determine uniquely the numbers t¢1, to, ..., t 5 by expres-

sions analogous to equation (3.29).
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We notice that the above construction is not unique, since the flow
from the initial beam Iy to a beam with prescribed values of the first IV
buckling loads depends on the particular order chosen to move every in-
dividual eigenvalue to the target value. As a consequence, the conditions
(3.31) on the initial beam Iy may change depending on the sequence of
eigenvalue shifts.

Finally, we remark that previous arguments can be adapted to cover
other sets of end conditions. In fact, by Proposition 2 of (Calio et al.,
2011), the equivalence between the buckling problem for beams and the
eigenvalue problem for strings stated in Proposition 2.1 can be extended
to situations in which the beam, for example, has left end pinned and

right end with a sliding constraint, e.g., %(L) =0 and % (I%) (L) =
0. The correspondence will link pinned and sliding end of the beam to
fixed and free end of the string, respectively.

4. Conclusions. In this paper we have considered the problem of con-
structing Euler-Bernoulli beams with prescribed values of the first NV
buckling loads, under a specified set of boundary conditions. The anal-
ysis is based on the fact that the buckling problem for a pinned-pinned
beam is equivalent to the eigenvalue problem for a fixed-fixed vibrating
string. The key point of the procedure is the determination of quasi-
isospectral strings, that is strings with different mass density which
have the same spectrum as the original string, with the exception of
a given eigenvalue which is free to move in a prescribed interval. Quasi-
isospectral systems follow from suitable application of a Darboux Lemma,
after reduction of the string equation to canonical Sturm-Liouville form.
The reconstruction procedure needs the specification of an initial beam
whose the buckling loads must satisfy certain interlacing conditions with
the assigned buckling loads. A theoretical aspect worth of investigation,
and still open, is the characterization of the set of beams that could be
chosen as starting point of the procedure.

5. Appendix. In this appendix we recall the Darboux Lemma.

Lemma 5.1 ((Darboux, 1882)):
Let p be a real number, and suppose g = g(§) is a non-trivial solution
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of the Sturm-Liouville equation

—g" +q9 = g, (5.1)

with continuous potential ¢ = q(&). If f is a non-trivial solution of

"+ af =\f (5.2)
and A # u, then
1 1
y=—lg.fl=-(gf —d'f 5.3
g[] g( ) (5.3)
is a non-trivial solution of the Sturm-Liouville equation
—y" +qy =y, (5.4)
where
¢ =q—2(In(g(¢))". (5.5)

Moreover, the general solution of the equation

~y"+ay =y (5.6)

Y= ; <b1 + b2 /05 92(5)d5> ; (5.7)

where by and by are arbitrary constants. In particular, y = % 18 a solution
of (5.6).

It should be noted that if g vanishes in [0, 1], then equation (5.4) is
understood to hold between the roots of g. These singular situations
disappear by applying the Darboux Lemma twice.

18
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