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A rigorous justification of design formulas
for torsion in thin profiles

C E S A R E  D A V I N I *  &  R O B E R T O  P A R O N I †   &  E R I C  P U N T E L ‡

Abstract. A rather straightforward derivation of the Γ-limit of the torsion
problem on a thin rectangle as the thickness goes to zero is obtained. The
limit stresses are evaluated and the distributional nature of one of the stress
components is clarified.

Key-words. Torsion, thin-walled beams, asymptotic method, Γ-convergence.

1. Introduction. As is known, exact solutions to the torsion problem
are available only for few special cases. Analytical solutions were first
produced by de Saint-Venant in 1855 [4] for cross sections of simple
geometry such as ellipses and rectangles. Several more or less general,
or easy to apply, solution methods were introduced in the following
century, we refer to the dated but interesting paper by Higgins [6] for
an exhaustive review on the subject.

Even when available, however, closed form solutions are hardly im-
plemented in current engineering practice, and approximate design for-
mulas are usually preferred; this is especially the case for thin walled
beams, slender cylinders with cross section made of thin walls, which
are widely employed for their high stiffness/weight ratio.

The present work deals with the simplest possible instance: that of
a thin rectangle subject to torsion. For this case, the torsional stresses
obtained through an approximate formula account for one half of the
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actual twisting moment only, as already noticed by Kelvin and Tait
[7]. These authors computed the limit of the series form solution for
vanishing thickness and ascribed the missing half of the twisting moment
to tractions vanishing everywhere but at a distance “infinitely little”
from the short sides of the rectangle.

It is possible to asses the validity of an approximate formula with-
out passing through the analytical solution for finite thickness. To our
knowledge, the first to do so were Rodriguez and Viaño [13, 14], who
studied the limit behavior of the solutions of Poisson’s equation by means
of functional analysis techniques. By studying the Dirichlet and Neu-
mann problems associated with the torsion of a thin section they found
the limit stress function and also the limit warping function. Their con-
cise analysis does not discuss the limit stresses. Dell’Isola and Rosa
[5], in view of technical applications, have recently used the asymptotic
method to compute the first three terms of the expansion, leaving aside
the discussion of the convergence properties.

Here we explore an alternative based on Γ-convergence which es-
tablishes the validity of the asymptotic results, stresses included, on a
rigorous basis.

In recent years Γ-convergence has been extensively applied to a great
variety of mechanical problems. To name some which are close to the
one studied below, Γ-convergence has been used to provide justification
[1, 8], extension and formulation [2, 11] of structural models involving
dimension reduction. As far as torsion is concerned, we mention the
deduction of Bredt formulas for single [9] and multi-cell cross sections
[10] given by Morassi.

Briefly, we state the torsion problem on a rectangle, whose thickness
scales with ε, in a variational form using Prandtl’s stress function. After
rescaling the domain we compute the Γ-limit of the corresponding se-
quence of functionals as ε → 0 and derive in a consistent manner not only
the limit problem to be analyzed but also the proof that the sequence
of minimizers of the functionals converges to the minimizer of the limit
problem. Through the Γ-convergence approach we obtain: (1) a rather
straightforward derivation of the limit functional, (2) the direct compu-
tation of limit stresses, (3) the clarification of the functional spaces in
which the limit tractions converge, thus specifying their distributional
nature. We believe that the last two items are the main results of our
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Then problem (2) can be restated in variational form as

F̃ε(ψ̃ε
m) = min

ψ̃∈H1
0 (Ω̃ε)

F̃ε(ψ̃). (3)

In order to consider the limit solution of variational problem (3) for
ε tending to zero it is convenient to represent the functions on a fixed
domain Ω = (−a/2, a/2) × (−b/2, b/2) by means of the transformation
of coordinates χε : Ω → Ω̃ε, defined by

(x̃1, x̃2) = χε(x1, x2) := (x1, εx2). (4)

Map χε establishes a natural correspondence between the functions
defined in the two domains Ω̃ε and Ω

ψ̃ = ψ ◦ χ−1
ε , (5)

which is an isomorphism between H1
0 (Ω̃ε) and H1

0 (Ω). Hereafter we
denote by an overset tilde functions defined in the physical domain Ω̃ε.
From (5) it follows that

∂ψ̃

∂x̃1
=

∂ψ

∂x1
◦ χ−1

ε and
∂ψ̃

∂x̃2
=

1
ε

∂ψ

∂x2
◦ χ−1

ε (6)

By changing variables and taking (6) into account, the functional F̃ε

becomes

F̃ε(ψ̃) = ε

ˆ
Ω

(
∂ψ

∂x1

)2

+
(

1
ε

∂ψ

∂x2

)2

− 4ψ da =: Fε (ψ) , (7)

which defines a new functional Fε : H1
0 (Ω) → R. The sought stress

function ψε
m = ψ̃ε

m ◦ χ−1
ε now minimizes the functional Fε, that is,

Fε (ψε
m) = min

ψ∈H1
0 (Ω)

Fε (ψ) . (8)

3. The limit problem. We shall now study the limit behaviour of the
variational problem defined in equations (7) and (8). We consider a
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sequence of potentials ψε§ such that functional Fε/ε3 is bounded in the
space

W := L2
((−a

2 , a
2

)
; H1

0

(− b
2 , b

2

))
,

endowed with norm

‖ψ‖2
W =

ˆ a/2

−a/2
‖ψ‖2

L2(−b/2,b/2) +
∥∥∥∥ ∂ψ

∂x2

∥∥∥∥
2

L2(−b/2,b/2)

dx1.

Let us first state an auxiliary result.

Inequality 1 (Poincaré-like).
For all g in H1

0 (Ω) : ‖g‖L2(Ω) ≤ b
∥∥∥ ∂g

∂x2

∥∥∥
L2(Ω)

.

Proof. Let at first g belong to H1
0 (Ω) ∩ C∞ (Ω), then

g (x1, x2) −������
g (x1,−b/2) =

ˆ x2

−b/2

∂g

∂x2
(x1, s) ds .

By Jensen’s inequality,

g2 ≤
(

b

 b/2

−b/2

∣∣∣∣ ∂g

∂x2
(x1, s)

∣∣∣∣ ds

)2

≤ b

ˆ b/2

−b/2

(
∂g

∂x2
(x1, s)

)2

ds .

Integrating over the domain Ω both the left and right hand side of the
above inequality one obtains:

‖g‖2
L2 ≤ b2

∥∥∥∥ ∂g

∂x2

∥∥∥∥
2

L2

By density the result.

Lemma 2 (Boundedness).
Let {ψε} ⊂ H1

0 (Ω) be a sequence such that sup
ε

Fε(ψε)
ε3 < +∞. Then

sup
ε

∥∥∥∥1
ε

∂ψε

∂x1

∥∥∥∥
L2(Ω)

< +∞ and sup
ε

∥∥∥∥ψε

ε2

∥∥∥∥
W

< +∞ .

§ With a slight abuse of notation we use to call sequences families indicized by a continuous parameter ε ∈
(0,1).
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Proof. By assumption and by (7)

+∞ >
Fε (ψε)

ε3
=
ˆ

Ω

(
1
ε

∂ψε

∂x1

)2

+
(

1
ε2

∂ψε

∂x2

)2

− 4
ψε

ε2
da

By using Young’s inequality: c d ≤ δ c2 + 1
4 δ d2 for all δ > 0, and In-

equality 1, we get

Fε (ψε)
ε3

≥
ˆ

Ω

(
1
ε

∂ψε

∂x1

)2

+
1
2

(
1
ε2

∂ψε

∂x2

)2

+
1

2 b2

(
ψε

ε2

)2

−δ

(
ψε

ε2

)2

− 1
4 δ

da.

By choosing 1/δ = 4b2 we obtain a sum of squared terms on the right
hand side

+∞ > b2+
Fε (ψε)

ε3
≥
ˆ

Ω

(
1
ε

∂ψε

∂x1

)2

+
1
2

(
1
ε2

∂ψε

∂x2

)2

+
1

4 b2

(
ψε

ε2

)2

da

which implies the thesis.

As a consequence of Lemma 2 we notice that the derivatives of stress
potential ψε with respect to x1 and x2 appear to be rescaled by two differ-
ent powers of ε, 1 and 2 respectively. This fact has relevant consequences
on forthcoming results.
Owing to the weak compactness of L2 and W it follows

Lemma 3 (Compactness).
For any sequence {ψε} ⊂ H1

0 (Ω) satisfying sup
ε

Fε(ψε)
ε3 < +∞, there exist

a ψ ∈ W and a subsequence of {ψε}, not relabeled, such that

ψε

ε2

W−⇀ ψ and
1
ε

∂ψε

∂x1

L2(Ω)−−−−⇀ 0.

Proof. From Lemma 2 we deduce the existence of a ψ ∈ W and a ξ ∈
L2 (Ω) such that

ψε

ε2

W−⇀ ψ and
∂ψε

∂x1

ε

L2(Ω)−−−−⇀ ξ.

Butˆ
Ω

ξ η = lim
ε−→0

ˆ
Ω

1
ε

∂ψε

∂x1
η = − lim

ε−→0
ε

ˆ
Ω

ψε

ε2

∂η

∂x1
= 0 ∀η ∈ C∞

0 (Ω) ,

and thus ξ = 0.
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By Lemma 2 the functional Fε

ε3 , thought of as a functional of ψε/ε2, is
equicoercive with respect to the weak topology in W and by Proposition
8.10 of Dal Maso [3] we can characterize the Γ-limit in terms of weakly
converging sequences. Thus Fε(ψε)

ε3 Γ-converges to the functional F0 :
W → R in the weak topology of W if F ′′(ψ) ≤ F0(ψ) ≤ F ′(ψ) for any
ψ ∈ W , where

F ′(ψ) := Γ − lim inf
ε→0

Fε

ε3
(ψ)

:= inf
{

lim inf
εj→0

Fεj

ε3
j

(ψεj ) : par
ψεj

ε2
j

⇀ ψ in W
}
,

F ′′(ψ) := Γ − lim sup
ε→0

Fε

ε3
(ψ)

:= inf
{

lim sup
εj→0

Fεj

ε3
j

(ψεj ) : par
ψεj

ε2
j

⇀ ψ in W
}
.

Theorem 4 (Γ– convergence). Let F0 : W → R be defined by

F0 (ψ) :=
ˆ

Ω

(
∂ψ

∂x2

)2

− 4ψ da.

Then Fε(ψε)
ε3 Γ-converges to F0 in the weak topology of W .

Proof. We start by proving that F0(ψ) ≤ F ′(ψ) for any ψ ∈ W . Let
ψ ∈ W and ψεj ⇀ ψ in W . Then by the weak lower semicontinuity of
the norm of W we have

lim inf
εj−→0

Fεj

ε3
j

(ψεj ) ≥ lim inf
εj−→0

ˆ
Ω

( 1
ε2
j

∂ψεj

∂x2

)2 − 4
ψεj

ε2
j

da ≥ F0 (ψ) .

To prove F ′′(ψ) ≤ F0(ψ) let us first assume that ψ ∈ C∞
0 (Ω) . Con-

sider the sequence ψεj = ε2
j ψ. Then

lim sup
εj−→0

Fεj

ε3
j

(ψεj ) = lim sup
εj−→0

ˆ
Ω

ε2
j

∂ψ

∂x1

2

+
∂ψ

∂x2

2

− 4 ψ = F0 (ψ)

If ψ ∈ W \C∞
0 (Ω) there is a sequence {ψk} ⊂ C∞

0 (Ω) converging strongly
in W to ψ. Since, by the equation above, F ′′(ψk) ≤ F0(ψk), the weak
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lower semicontinuity of F ′′ and the continuity of F0 respect to the strong
convergence in W implies

F ′′(ψ) ≤ lim inf
k→+∞

F ′′(ψk) ≤ lim inf
k→+∞

F0(ψk) = F0(ψ)

and the proof is concluded.

4. Convergence of the minimizers. Let εj → 0. Since Fεj

ε3
j

(ψεj
m) ≤

Fεj

ε3
j

(0) = 0, by Lemma 2 the sequence {ψεj
m/ε2

j} is equibounded in W .

Thus there exists a subsequence weakly converging in W to a function
ψm. By Γ-convergence, see Dal Maso [3, Corollary 7.17], ψm is the min-
imizer of F0 and

lim
εj−→0

Fεj

ε3
j

(ψεj
m) = F0(ψm). (9)

Since the limit function ψm does not depend on the chosen subsequence
we have that the full sequence converges. From the strict convexity of
the functionals Fε we deduce the strong convergence of the minimizers.

Theorem 5. With the notation above, we have

ψε
m

ε2
→ ψm, in W. (10)

Proof. With simple estimates we find,

Fε

ε3
(ψε

m) ≥
ˆ

Ω

( 1
ε2

∂ψε
m

∂x2

)2 − 4
ψε

m

ε2
da =

ˆ
Ω

( 1
ε2

∂ψε
m

∂x2
− ∂ψm

∂x2

)2
+

+ 2
∂ψm

∂x2

( 1
ε2

∂ψε
m

∂x2
− ∂ψm

∂x2

)
+

(∂ψm

∂x2

)2 − 4
ψε

m

ε2
da.

Taking the limit of both sides and using (9) we deduce

0 ≥ lim
ε−→0

ˆ
Ω

( 1
ε2

∂ψε
m

∂x2
− ∂ψm

∂x2

)2
da.

Using Poincare’s inequality we conclude the proof.
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Imposing the stationarity condition for F0, we find that ψm satisfies⎧⎪⎨
⎪⎩

∂2ψ

∂x2
2

= −2,

ψ
(·,− b

2

)
= ψ

(·, b
2

)
= 0,

whose solution is

ψm = −
(

x2
2 −

b2

4

)
(11)

It is worth noticing that the Dirichlet boundary condition on the
short sides of the rectangle (ψ (±a/2, ·) = 0) is not imposed in the limit
problem. This is due to the lack of control of terms containing the
derivative of the stress potential ψε/ε2 with respect to x1 in functionals
Fε

ε3 . Even if ψ is a priori a function of both x1 and x2, the solution
ψm depends only on the latter, confirming the violation of boundary
constraints in x1 = ±a/2.

Figure 2 illustrates three scaled solutions ψε
m/ε2 plotted on the ref-

erence domain Ω for decreasing values of ε. The convergence towards
the minimizer ψm of the limit functional F0, see (11), is evident.

5. Limit stresses. In this section we derive the limit stresses. To this
end it is first necessary to give a consistent definition of tractions τ ε

13

and τ ε
23 in the reference domain Ω, this will be achieved by relating the

stresses τ ε
13 and τ ε

23 in the reference domain Ω with those in the actual
domain Ω̃ε.

Component-wise definition of τ̃ ε
13 and τ̃ ε

23 is, recalling (1), given by

τ̃ ε
13 = µα

∂ψ̃ε
m

∂x̃2
, τ̃ ε

23 = −µα
∂ψ̃ε

m

∂x̃1
.

By making the change of variables (4) and (5) and taking into account
(10) it is natural to define

τ ε
13 :=

τ̃ ε
13

ε
◦ χε =

µα

ε2

∂ψε
m

∂x2
. (12)
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The limit of τ ε
13 follows at once from (10). Indeed we have

τ ε
13 = µα

1
ε2

∂ψε
m

∂x2
→ µα

∂ψm

∂x2
=: τ13 in W.

Expression of the potential ψm given in (11) yields

τ13 = −2µα x2, in Ω. (13)

The case of τ ε
23 is slightly more involved because the existence of a

limit is not assured by the Γ-convergence theorem. Let

H∗ := H1((−a

2
,
a

2
); L2(− b

2
,
b

2
))∗

denote the dual space of

H := H1((−a

2
,
a

2
); L2(− b

2
,
b

2
)).

Then ∥∥∥∥ 1
ε2

∂ψε
m

∂x1

∥∥∥∥
H∗

= sup
η∈H

´
Ω ψε

m
∂η
∂x1

1
ε2 da

‖η‖H

≤
∥∥∥∥ψε

m

ε2

∥∥∥∥
L2(Ω)

< +∞

Hence from the bound above it follows that there exists a subse-
quence of 1

ε2
∂ψε

m
∂x1

weakly convergent in H∗. Indeed using the fact that

ψε
m/ε2 is converging in L2(Ω), we deduce that 1

ε2
∂ψε

m
∂x1

is a Cauchy se-
quence in H∗ and thus it converges strongly.

Let us denote by H1 the one dimensional Hausdorff measure, and by

B+
a :=

{
a
2

} × (− b
2 , b

2

)
, B−

a :=
{−a

2

} × (− b
2 , b

2

)
,

the end sides of the rectangle in direction x1. We claim that

τ ε
23 → τ23 in H∗, (14)

where

τ23 := µ α ψm

(H1�B+
a − H1�B−

a

)
, (15)

that is the element of H∗ defined by

〈τ23, η〉 = µα

ˆ b/2

−b/2
ψm

[
η

(
a
2 , x2

) − η
(−a

2 , x2

)]
dx2, ∀η ∈ H.
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or as

M = 〈τ23, x1〉 −
ˆ

Ω
x2 τ13 da,

where the two contributions on the right hand side are given by

〈τ23, x1〉 = µ α

ˆ b/2

−b/2
ψm dx2

(a

2
−

(
−a

2

))
= µ α

a b3

6

−
ˆ

Ω
x2 τ13 da = 2µ α

ˆ
Ω

x2
2da = µ α

a b3

6
.

The two stress components are found to each account for half of the
overall stiffness; in particular it emerges that the τ23 contribution is
that of a couple of forces F = µ α

´ b/2
−b/2 ψm dx2 acting on the short sides

of the domain.
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Boston, MA: Birkhäuser Boston Inc.

[4] de Saint-Venant A.J.C.B. (1855). Mémoire sur la torsion de prismes,
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